1
|
Al-Abbad H, Reznik JE, Biros E, Paulik B, Will R, Gane S, Moss P, Wright A. Evaluation of treatment parameters for focused-extracorporeal shock wave therapy in knee osteoarthritis patients with bone marrow lesions: a pilot study. J Rehabil Med 2024; 56:jrm13207. [PMID: 38470167 PMCID: PMC10949080 DOI: 10.2340/jrm.v56.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVES To evaluate the effect of different dosage parameters of focused-extracorporeal shock wave therapy on pain and physical function in knee osteoarthritis patients with bone marrow lesions. In addition, to investigate pathophysiological changes based on imaging and biomarker measures. METHODS Using a single-case experimental design, a total of 12 participants were randomly allocated in 4 equal groups of 3 to receive different dosages of focused-extracorporeal shock wave therapy. Each group received either 4 or 6 sessions of 1500 or 3000 shocks over 4 or 6 weekly sessions. Participants underwent repeated measurements during the baseline, intervention, and post-intervention phases for Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, aggregated locomotor function score and pressure pain threshold. Imaging and inflammatory biomarker outcomes were measured at baseline and 3 months following the intervention. RESULTS The group receiving the highest dosage of focused-extracorporeal shock wave therapy showed clinical improvements superior to those of participants in the other 3 groups. Statistically significant changes during the follow-up phase in contrast to baseline measurements for the WOMAC score (Tau-U= -0.88, p < 0.001), aggregated locomotor function score (Tau-U= -0.77, p = 0.002), and pressure pain threshold (Tau-U= 0.54, p = 0.03) were observed. Bone marrow lesion and inflammatory cytokines demonstrated no change. CONCLUSION A dose-dependent effect for focused-extracorporeal shock wave therapy on osteoarthritis-related symptoms was suggested. However, these improvements were not associated with changes in the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Hani Al-Abbad
- Physical Therapy department, Rehabilitation hospital, King Fahad Medical City. Riyadh, Saudi Arabia; College of Healthcare Science and Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Jacqueline E Reznik
- College of Healthcare Science and Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Erik Biros
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Bruce Paulik
- Hollywood Functional Rehabilitation Clinic, Nedlands, Perth, WA, Australia
| | - Rob Will
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | | | - Penny Moss
- School of Allied Health, Curtin University, Perth, WA, Australia
| | - Anthony Wright
- School of Allied Health, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Abo Elyazed TI, Al-Azab IM, Abd El-Hakim AAEM, Elkady SM, Afifi RMM, Obaya HE. Effect of high-intensity laser therapy versus shockwave therapy on selected outcome measures in osteoporotic long-term hemiparetic patients: a randomized control trial. J Orthop Surg Res 2023; 18:653. [PMID: 37660042 PMCID: PMC10475189 DOI: 10.1186/s13018-023-04141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND This study aimed to compare the effects of high-intensity laser therapy (HILT) and extracorporeal shock wave therapy (ESWT) in treating consequences of osteoporosis in hemiparetic patients. METHODS A randomized controlled trial was conducted on hemiplegic patients with osteoporosis. They were randomly classified into three equal groups (n = 40 in each group). The control group received medication and traditional physiotherapy programs for stroke patients. The high-intensity laser (HIL) group received the same intervention as the control group in addition to high-intensity laser therapy. The shock wave (SW) group received the same intervention as the control group in addition to shock wave therapy. The three groups received an intervention that lasted 3 sessions/week for 12 weeks). All groups were assessed before and after therapy for the degree of pain, fall risk, and quality of life. RESULTS A statistically significant difference (p < 0.05) was found concerning VAS, which had a significant difference in favor of HILT and ESWT groups compared to the control group; however, no significant difference was determined between HIL and SW groups. Regarding the overall stability index, SFBBS, and QUALEFFO-41, there was a significant difference in favor of HIL and SW groups compared to the control group, and a significant difference was found in HIL when compared to SW. CONCLUSION The current study indicates that the combined traditional physical therapy and HILT and ESWT have clinical significance in improving osteoporotic long-term hemiparetic patients with more favor to HILT. TRIAL REGISTRATION The study was registered as a clinical trial at ClinicalTrial.gov ID (NCT05616611).
Collapse
Affiliation(s)
- Tamer I Abo Elyazed
- Department of Physical Therapy for Internal Medicine, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt.
| | - Islam M Al-Azab
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, October 6th University, Giza, Egypt
| | | | - Sabah Mohamed Elkady
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | | | - Hany Ezzat Obaya
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Sansone V, Ravier D, Pascale V, Applefield R, Del Fabbro M, Martinelli N. Extracorporeal Shockwave Therapy in the Treatment of Nonunion in Long Bones: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:1977. [PMID: 35407583 PMCID: PMC8999664 DOI: 10.3390/jcm11071977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Nonunion is one of the most challenging problems in the field of orthopedics. The aim of this study was to perform a systematic review of the literature to evaluate the effectiveness of extracorporeal shockwave therapy (ESWT) in the treatment of nonunion in long bones. Methods: We conducted a search of three databases (PubMed, Scopus, and Web of Science) and found 646 total publications, of which 23 met our inclusion criteria. Results: Out of 1200 total long bone nonunions, 876 (73%) healed after being treated with ESWT. Hypertrophic cases achieved 3-fold higher healing rates when compared to oligotrophic or atrophic cases (p = 0.003). Metatarsal bones were the most receptive to ESWT, achieving a healing rate of 90%, followed by tibiae (75.54%), femurs (66.9%) and humeri (63.9%). Short periods between injury and treatment lead to higher healing rates (p < 0.02). Conversely, 6 months of follow-up after the treatment appears to be too brief to evaluate the full healing potential of the treatment; several studies showed that healing rates continued to increase at follow-ups beyond 6 months after the last ESWT treatment (p < 0.01). Conclusions: ESWT is a promising approach for treating nonunions. At present, a wide range of treatment protocols are used, and more research is needed to determine which protocols are the most effective.
Collapse
Affiliation(s)
- Valerio Sansone
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Ravier
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
| | - Valerio Pascale
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Rachel Applefield
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
| | - Massimo Del Fabbro
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Nicolò Martinelli
- Department of Orthopedics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20100 Milan, Italy; (V.S.); (D.R.); (V.P.); (R.A.); (M.D.F.)
| |
Collapse
|
4
|
Mancuso ME, Wilzman AR, Murdock KE, Troy KL. Effect of External Mechanical Stimuli on Human Bone: a narrative review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012006. [PMID: 36310606 PMCID: PMC9616042 DOI: 10.1088/2516-1091/ac41bc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bone is a living composite material that has the capacity to adapt and respond to both internal and external stimuli. This capacity allows bone to adapt its structure to habitual loads and repair microdamage. Although human bone evolved to adapt to normal physiologic loading (for example from gravitational and muscle forces), these same biological pathways can potentially be activated through other types of external stimuli such as pulsed electromagnetic fields, mechanical vibration, and others. This review summarizes what is currently known about how human bone adapts to various types of external stimuli. We highlight how studies on sports-specific athletes and other exercise interventions have clarified the role of mechanical loading on bone structure. We also discuss clinical scenarios, such as spinal cord injury, where mechanical loading is drastically reduced, leading to rapid bone loss and permanent alterations to bone structure. Finally, we highlight areas of emerging research and unmet clinical need.
Collapse
|
5
|
Inoue S, Hatakeyama J, Aoki H, Kuroki H, Niikura T, Oe K, Fukui T, Kuroda R, Akisue T, Moriyama H. Utilization of Mechanical Stress to Treat Osteoporosis: The Effects of Electrical Stimulation, Radial Extracorporeal Shock Wave, and Ultrasound on Experimental Osteoporosis in Ovariectomized Rats. Calcif Tissue Int 2021; 109:215-229. [PMID: 33751141 DOI: 10.1007/s00223-021-00831-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
Current treatment options for osteoporosis primarily involve pharmacotherapies, but they are often accompanied by undesirable side effects. Utilization of mechanical stress which can noninvasively induce bone formation has been suggested as an alternative to conventional treatments. Here, we examined the efficacy of mechanical stress induced by electrical stimulation, radial extracorporeal shock waves, and ultrasound for estrogen-deficient osteoporosis. Female Wistar rats were divided into following five groups: sham-operated group, untreated after ovariectomy, and treated with electrical stimulation, radial extracorporeal shock wave, or ultrasound starting at 8 weeks after ovariectomy for 4 weeks. Trabecular bone architecture of the femur was assessed by micro-CT and its biomechanical properties were obtained by mechanical testing. The femurs were further evaluated by histochemical, immunohistochemical, and real-time PCR analyses. Radial extracorporeal shock wave and ultrasound treatment improved trabecular bone microarchitecture and bone strength in osteoporotic rats, but not electrical stimulation. The shock wave decreased osteoclast activity and RANKL expression. The exposure of ultrasound increased osteoblast activity and β-catenin-positive cells, and they decreased sclerostin-positive osteocytes. These findings suggest that mechanical stress induced by radial extracorporeal shock wave and ultrasound can improve estrogen-deficient bone loss and bone fragility through promoted bone formation or attenuated bone resorption.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hitoshi Aoki
- OG Wellness Technologies Co., Ltd, Okayama, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiro Akisue
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|