1
|
Song X, Yan S, Lai S, Zhang Y, Wang Y, He J, Huang D, Zhang J, Lu X, Chen G, Chen P, Zhong Q, Zhang R, Wu Y, Yin J, Zhong S, Jia Y. Gender differences of neurometabolic and neuroendocrine alternations and its lateralization in adolescents with major depressive disorder. BMC Psychiatry 2024; 24:949. [PMID: 39731037 DOI: 10.1186/s12888-024-06428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD. METHODS A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants. Measurement was conducted on levels of endocrine hormones, which included free tri-iodothyronine (FT3), total tri-iodothyronine (TT3), free thyroxin (FT4), total thyroxin (TT4), thyroid-stimulating hormone (TSH), cortisol, and adrenocorticotropic hormone (ACTH). Obtained through 1H-MRS, the N-acetyl aspartate (NAA) and choline containing compounds (Cho) to creatine (Cr) ratios were acquired for the prefrontal whiter matter (PWM), anterior cingulate cortex (ACC), basal ganglia (BG), thalamus, and cerebellum. RESULT After adjusting for multiple comparisons, female adolescents with MDD showed lower ACTH levels compared to their male counterparts. An increased lateralization index (LI) was observed in female patients for both the thalamic Cho/Cr ratio and the basal ganglia NAA/Cr ratio. Additionally, an intriguing finding was that in male adolescent patients, TT4 levels were significantly correlated with the Cho/Cr ratio in the left cerebellum. However, no such correlation between hormones and brain metabolism was found in females. CONCLUSIONS Gender differences in endocrine and neurometabolic abnormalities may contribute to the gender-specific pathophysiology of MDD in adolescent patients. Metabolic abnormalities and lateralization changes are observed in different brain regions for male and female MDD patients.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Rongxu Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yangyu Wu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jie Yin
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Wu GR, Baeken C. Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety. Transl Psychiatry 2024; 14:459. [PMID: 39488540 PMCID: PMC11531544 DOI: 10.1038/s41398-024-03171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
3
|
Yang J, Tang T, Gui Q, Zhang K, Zhang A, Wang T, Yang C, Liu X, Sun N. Status and trends of TMS research in depressive disorder: a bibliometric and visual analysis. Front Psychiatry 2024; 15:1432792. [PMID: 39176225 PMCID: PMC11338766 DOI: 10.3389/fpsyt.2024.1432792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Depression is a chronic psychiatric condition that places significant burdens on individuals, families, and societies. The rapid evolution of non-invasive brain stimulation techniques has facilitated the extensive clinical use of Transcranial Magnetic Stimulation (TMS) for depression treatment. In light of the substantial recent increase in related research, this study aims to employ bibliometric methods to systematically review the global research status and trends of TMS in depression, providing a reference and guiding future studies in this field. Methods We retrieved literature on TMS and depression published between 1999 and 2023 from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) databases within the Web of Science Core Collection (WoSCC). Bibliometric analysis was performed using VOSviewer and CiteSpace software to analyze data on countries, institutions, authors, journals, keywords, citations, and to generate visual maps. Results A total of 5,046 publications were extracted covering the period from 1999 to 2023 in the field of TMS and depression. The publication output exhibited an overall exponential growth trend. These articles were published across 804 different journals, BRAIN STIMULATION is the platform that receives the most articles in this area. The literature involved contributions from over 16,000 authors affiliated with 4,573 institutions across 77 countries. The United States contributed the largest number of publications, with the University of Toronto and Daskalakis ZJ leading as the most prolific institution and author, respectively. Keywords such as "Default Mode Network," "Functional Connectivity," and "Theta Burst" have recently garnered significant attention. Research in this field primarily focuses on TMS stimulation patterns, their therapeutic efficacy and safety, brain region and network mechanisms under combined brain imaging technologies, and the modulation effects of TMS on brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Conclusion In recent years, TMS therapy has demonstrated extensive potential applications and significant implications for the treatment of depression. Research in the field of TMS for depression has achieved notable progress. Particularly, the development of novel TMS stimulation patterns and the integration of TMS therapy with multimodal techniques and machine learning algorithms for precision treatment and investigation of brain network mechanisms have emerged as current research hotspots.
Collapse
Affiliation(s)
- Jun Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Tingting Tang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Qianqian Gui
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Kun Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Liu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Wu GR, Baeken C. Precision targeting in prediction for rTMS clinical outcome in depression: what about sgACC lateralization, metabolic connectivity, and the potential role of the cerebellum? Eur Arch Psychiatry Clin Neurosci 2023; 273:1443-1450. [PMID: 37329365 DOI: 10.1007/s00406-023-01637-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
Predicting clinical response to repetitive transcranial magnetic stimulation (rTMS) in medication-resistant depression (MRD) has gained great importance in recent years. Mainly, the right subgenual anterior cingulate cortex (sgACC) functional connectivity has been put forward as biomarker in relation to rTMS clinical outcome. Even though the left and right sgACC may have different neurobiological functions, little is known about the possible lateralized predictive role of the sgACC in rTMS clinical outcome. In 43 right-handed antidepressant-free MRD patients, we applied a searchlight-based interregional covariance connectivity approach using the baseline 18FDG-PET scan-collected from two previous high-frequency (HF)-rTMS treatment studies delivering stimulation to the left dorsolateral prefrontal cortex (DLPFC)-and investigated whether unilateral or bilateral sgACC glucose metabolism at baseline would result in different predictive metabolic connectivity patterns. Regardless of sgACC lateralization, the weaker the sgACC seed-based baseline metabolic functional connections with the (left anterior) cerebellar areas, the significantly better the clinical outcome. However, the seed diameter seems to be crucial. Similar significant findings on sgACC metabolic connectivity with the left anterior cerebellum, also unrelated to sgACC lateralization, in relation to clinical outcome were observed when using the HCPex atlas. Although we could not substantiate that specifically right sgACC metabolic connectivity would predict HF-rTMS clinical outcome, our findings suggest considering the entire sgACC in functional connectivity predictions. Given that the interregional covariance connectivity results were significant only when using the Beck Depression Inventory (BDI-II) and not with the Hamilton Depression Rating Scale (HDRS), our sgACC metabolic connectivity observations also suggest the possible involvement of the (left) anterior cerebellum involved in higher-order cognitive processing as part of this predictive value.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- School of Psychology, Jiangxi Normal University, Nanchang, China.
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Yang KC, Chou YH. Molecular imaging findings for treatment resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 278:79-116. [PMID: 37414495 DOI: 10.1016/bs.pbr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Wu GR, Duprat R, Baeken C. Accelerated iTBS changes perfusion patterns in medication resistant depression. J Affect Disord 2022; 306:276-280. [PMID: 35306123 DOI: 10.1016/j.jad.2022.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/22/2023]
Abstract
Accelerated intermittent Theta Burst Stimulation (aiTBS) is a new non-invasive brain stimulation protocol developed to rapidly treat medication resistant depression (MRD). However, to examine potential neurobiological changes only few sham-controlled studies combining pre/post treatment measures and brain imaging data are available. Consequently, with this Arterial Spin Labeling (ASL) brain imaging study, we investigated in 45 antidepressant-free MRD patients whether clinical improvement following aiTBS treatment applied to the left dorsolateral prefrontal cortex (Trial registration: http://clinicaltrials.gov/show/NCT01832805) would be associated with specific changes in brain perfusion patterns. We primarily expected frontolimbic perfusion changes following active and not sham aiTBS. Our ASL brain imaging findings showed that active aiTBS resulted in prompt perfusion increases in functionally connected brain regions such as the ventromedial prefrontal cortex and the right inferior parietal lobule. We also observed decreased perfusion in the left parahippocampal gyrus and the right posterior cerebellar lobe after active aiTBS. On the other hand, sham aiTBS resulted in right angular perfusion decreases, an area known to be involved in placebo responses. Overall, our perfusion findings indicate that active aiTBS treatment promptly affects brain regions functionally and structurally connected to the stimulated area and known to be part of deregulated brain circuits when clinically depressed. Placebo responses may be part of the clinical effects of accelerated ITS protocols. Our current results further shed light on how accelerated rTMS treatment protocols may promptly improve depressive symptoms in MRD.
Collapse
Affiliation(s)
- Guo-Rong Wu
- School of Psychology, Jiangxi Normal University, Nanchang, China; Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Romain Duprat
- Center for the Neuromodulation of Depression and Stress, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA, USA
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Departement of Electrical Engineering, Eindhoven, the Netherlands
| |
Collapse
|
7
|
Cerebellum and Neurorehabilitation in Emotion with a Focus on Neuromodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:285-299. [DOI: 10.1007/978-3-030-99550-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
9
|
Van Overwalle F, Baeken C, Campanella S, Crunelle CL, Heleven E, Kornreich C, Leggio M, Noël X, Vanderhasselt MA, Baetens K. The Role of the Posterior Cerebellum in Dysfunctional Social Sequencing. THE CEREBELLUM 2021; 21:1123-1134. [PMID: 34637054 DOI: 10.1007/s12311-021-01330-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/19/2023]
Abstract
Recent advances in social neuroscience have highlighted the critical role of the cerebellum in social cognition, and especially the posterior cerebellum. Studies have supported the view that the posterior cerebellum builds internal action models of our social interactions to predict how other people's actions will be executed and what our most likely responses are to these actions. This mechanism allows to better anticipate action sequences during social interactions in an automatic and intuitive way and to fine-tune these anticipations, making it easier to understand other's social behaviors and mental states (e.g., beliefs, intentions, traits). In this paper, we argue that the central role of the posterior cerebellum in identifying and automatizing social action sequencing provides a fruitful starting point for investigating social dysfunctions in a variety of clinical pathologies, such as autism, obsessive-compulsive and bipolar disorder, depression, and addiction. Our key hypothesis is that dysfunctions of the posterior cerebellum lead to under- or overuse of inflexible social routines and lack of plasticity for learning new, more adaptive, social automatisms. We briefly review past research supporting this view and propose a program of research to test our hypothesis. This approach might alleviate a variety of mental problems of individuals who suffer from inflexible automatizations that stand in the way of adjustable and intuitive social behavior, by increasing posterior cerebellar plasticity using noninvasive neurostimulation or neuro-guided training programs.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Department of Psychology & Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium.
| | - Chris Baeken
- Department of Psychology & Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium.,Department of Psychiatry, Vrije Universiteit Brussel & Universitair Ziekenhuis Brussel, Brussel, Belgium.,Department of Psychiatry, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Salvatore Campanella
- Laboratoire de Psychologie Médicale Et d'Addictologie, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium.,UNI Neuroscience Institute, Université Libre de Bruxelles, Bruxelles, Belgium.,Faculty of Psychology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Cleo L Crunelle
- Department of Psychiatry, Vrije Universiteit Brussel & Universitair Ziekenhuis Brussel, Brussel, Belgium
| | - Elien Heleven
- Department of Psychology & Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
| | - Charles Kornreich
- Laboratoire de Psychologie Médicale Et d'Addictologie, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium.,UNI Neuroscience Institute, Université Libre de Bruxelles, Bruxelles, Belgium.,Faculty of Psychology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Maria Leggio
- Department of Psychology & Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Sapienza University of Roma, Rome, Italy
| | - Xavier Noël
- Laboratoire de Psychologie Médicale Et d'Addictologie, Faculty of Medicine, Université Libre de Bruxelles, Bruxelles, Belgium.,UNI Neuroscience Institute, Université Libre de Bruxelles, Bruxelles, Belgium.,Faculty of Psychology, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | - Kris Baetens
- Department of Psychology & Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium.,Brussels University Consultation Center, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
10
|
Madore M, Poh E, Bolland SJ, Rivera J, Taylor J, Cheng J, Booth E, Nable M, Heath A, Yesavage J, Rodger J, McNerney MW. Moving back in the brain to drive the field forward: Targeting neurostimulation to different brain regions in animal models of depression and neurodegeneration. J Neurosci Methods 2021; 360:109261. [PMID: 34146593 PMCID: PMC8349553 DOI: 10.1016/j.jneumeth.2021.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation is a promising noninvasive therapeutic tool for a variety of brain-related disorders. However, most therapeutic protocols target the anterior regions, leaving many other areas unexplored. There is a substantial therapeutic potential for stimulating various brain regions, which can be optimized in animal models. NEW METHOD We illustrate a method that can be utilized reliably to stimulate the anterior or posterior brain in freely moving rodents. A coil support device is surgically attached onto the skull, which is used for consistent coil placement over the course of up to several weeks of stimulation sessions. RESULTS Our methods provide reliable stimulation in animals without the need for restraint or sedation. We see little aversive effects of support placement and stimulation. Computational models provide evidence that moving the coil support location can be utilized to target major stimulation sites in humans and mice. SUMMARY OF FINDINGS WITH THIS METHOD Animal models are key to optimizing brain stimulation parameters, but research relies on restraint or sedation for consistency in coil placement. The method described here provides a unique means for reliable targeted stimulation in freely moving animals. Research utilizing this method has uncovered changes in biochemical and animal behavioral measurements as a function of brain stimulation. CONCLUSIONS The majority of research on magnetic stimulation focuses on anterior regions. Given the substantial network connectivity throughout the brain, it is critical to develop a reliable method for stimulating different regions. The method described here can be utilized to better inform clinical trials about optimal treatment localization, stimulation intensity and number of treatment sessions, and provides a motivation for exploring posterior brain regions for both mice and humans.
Collapse
Affiliation(s)
- Michelle Madore
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugenia Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - Samuel J Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | | | - Joy Taylor
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jauhtai Cheng
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Booth
- Department of Electrical and Computer Engineering, Boise State University, Boise ID
| | - Monica Nable
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alesha Heath
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jerry Yesavage
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth WA, Australia
| | - M. Windy McNerney
- Veterans Affairs Palo Alto Health Care system, Palo Alto, CA, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinson's disease. Clin Neurophysiol 2019; 130:1292-1298. [PMID: 31176928 DOI: 10.1016/j.clinph.2019.04.720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/29/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the effect of Low Frequency repetitive Transcranial Magnetic Stimulation (LF rTMS) on brain metabolites in late stage Parkinson's disease (PD) patients (disease duration at least 4 years and Hoehn and Yahr (1969) score at least 2 in OFF). Several neuroimaging data support a role for pre-Supplementary Motor Area (pre-SMA) involvement in the pathogenesis of Parkinson's disease. Proton magnetic resonance spectroscopy (1H-MRS) measures in vivo metabolites, but results in PD brain remain conflicting and little is known of the effect of LF rTMS thereupon. METHODS We investigate the neurochemical profile of the right pre-SMA in 17 late stage PD patients (11 male and 6 female, mean age of 71 years) before and after one session of sham controlled 1 Hz rTMS (1000 pulses, 16 minutes), focusing on the tNAA/tCr and tCho/tCr ratios. RESULTS The tNAA/tCr ratio was unaffected by one session of LF rTMS. We did observe a significant effect of real LF rTMS on the tCho/tCr ratio, inversely correlated with disease duration, and not related to the presence of dyskinesias. As expected, one session of LF rTMS did not affect clinical outcome. CONCLUSIONS LF rTMS at the right pre-SMA in late stage Parkinson's disease patients does not alter tNAA/tCr, but influences tCho/tCr ratio, in particular in patients with shorter disease duration. SIGNIFICANCE Pre-SMA LF rTMS seems to influence membrane turnover, more importantly in patients with shorter disease duration. Larger LF rTMS treatment studies applying multiple sessions are needed.
Collapse
|
12
|
Yao Z, Fang L, Yu Y, Zhang Z, Zheng W, Li Z, Li Y, Zhao Y, Hu T, Zhang Z, Hu B. Gender-disease interaction on brain cerebral metabolism in cancer patients with depressive symptoms. BMC Psychiatry 2019; 19:14. [PMID: 30621635 PMCID: PMC6325878 DOI: 10.1186/s12888-018-2002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer patients are accompanied with high morbidity of depression, and gender effects are known to inhabit in the depressive episodes. This study aimed to explore the gender effects in cancer patients, and the relationship between gender-cancer factors and the depression symptoms. METHODS The 18F-FDG PET scans of 49 cancer patients and 48 normal controls were included. We used voxel-wise analysis to explore the effects of cancer factor and gender factor in cerebral glucose metabolism. Beck Depression Inventory was utilized to quantify the depression symptoms in cancer patients. RESULTS Our results showed significant cancer main effects primarily in superior frontal gyrus and parietal gyrus; and significant gender main effects primarily in cerebellum posterior lobe, inferior temporal gyrus. Significant gender-by-cancer interaction effects were also observed, which primarily located in superior frontal gyrus. We showed the metabolic intensities of the 5 aforementioned clusters were related to the mental stress of depressive emotion. CONCLUSIONS Our results suggested that males and females have different psychological endurance when facing cancer diagnosis or preventing depression. Furthermore, the cerebral abnormal metabolism might serve as a depressive indicator for cancer patients. The present findings provided supporting evidence for abnormal cerebral glucose metabolism affected by gender factor in cancer patients with mental stress of depressive emotion, and these brain regions should be concerned in clinic.
Collapse
Affiliation(s)
- Zhijun Yao
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Lei Fang
- PET/CT Center, Affiliated Lanzhou General Hospital of Lanzhou Military Area Command, 333 South Binhe Road, Lanzhou, 730050 Gansu Province People’s Republic of China
| | - Yue Yu
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Zhe Zhang
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Weihao Zheng
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Zhihao Li
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Yuan Li
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Yu Zhao
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Tao Hu
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Zicheng Zhang
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
| | - Bin Hu
- Gansu Provincal Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu Province 730000 People’s Republic of China
- Center of Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences(CEBSIT), Shanghai Municipality, 200031 People’s Republic of China
| |
Collapse
|
13
|
Svensson AF, Khaldi M, Engström I, Matusevich K, Nordenskjöld A. Remission rate of transcranial magnetic stimulation compared with electroconvulsive therapy: a case-control study. Nord J Psychiatry 2018; 72:471-476. [PMID: 30359165 DOI: 10.1080/08039488.2018.1481998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To compare the rate of remission, rate of response, change in depressive symptoms, and adverse effects between repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). MATERIALS AND METHODS In this retrospective case-control study, 35 patients treated for depression with rTMS (left dorsolateral prefrontal cortex, 90% observed motor threshold, 10 Hz, 2000 pulses/session, 15 sessions) at Örebro University Hospital, Sweden (cases), were compared with a matched group of 35 patients treated for depression with ECT (controls). Data on controls were obtained from the Swedish National Quality Register for ECT (Q-ECT). Severity of depression was evaluated using the Montgomery-Åsberg Depression rating scale (MADRS). RESULTS Remission rate was 26% for cases and 43% for controls (p = .3). Response rate was 40% for cases and 51% for controls (p = .63). The median decrease in MADRS was 11 (IQR 3-19) vs. 17 (IQR 6-27; p = .10) for rTMS and ECT, respectively. There was no statistically significant difference in any measure of treatment effect between rTMS and ECT. More than half of the patients of the rTMS group experienced scalp discomfort and 11% of the ECT group had memory disturbances. CONCLUSIONS All measures of therapeutic efficacy were numerically inferior in the rTMS group compared to the ECT group. The differences were not statistically significant, probably because the sample size was small. More studies are required to find the optimal place for rTMS within the Swedish health care system. Such studies could be facilitated by inclusion of rTMS in the Q-ECT.
Collapse
Affiliation(s)
| | - Maher Khaldi
- a School of Medical Sciences , Örebro University , Örebro , Sweden
| | - Ingemar Engström
- b School of Medical Sciences , University Health Care Research Center, Örebro University , Sweden
| | | | - Axel Nordenskjöld
- b School of Medical Sciences , University Health Care Research Center, Örebro University , Sweden
| |
Collapse
|
14
|
Duan X, Yao G, Liu Z, Cui R, Yang W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front Hum Neurosci 2018; 12:215. [PMID: 29899693 PMCID: PMC5988869 DOI: 10.3389/fnhum.2018.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop after stroke. Patients with PSD show poorer functional and recovery outcomes than patients with stroke who do not suffer from depression. The risk of suicide is also higher in patients with PSD. PSD appears to be associated with complex pathophysiological mechanisms involving both psychological and psychiatric problems that are associated with functional deficits and neurochemical changes secondary to brain damage. Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical excitability via magnetic stimulation of the brain. TMS is currently a valuable tool that can help us understand the pathophysiology of PSD. Although repetitive TMS (rTMS) is an effective treatment for patients with PSD, its mechanism of action remains unknown. Here, we review the known mechanisms underlying rTMS as a tool for better understanding PSD pathophysiology. It should be helpful when considering using rTMS as a therapeutic strategy for PSD.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhongliang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Richieri R, Verger A, Boyer L, Boucekine M, David A, Lançon C, Cermolacce M, Guedj E. Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: A brain perfusion SPECT study. Brain Stimul 2018; 11:1093-1097. [PMID: 29802071 DOI: 10.1016/j.brs.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous clinical trials have suggested that repetitive transcranial magnetic stimulation (rTMS) has a significant antidepressant effect in patients with treatment resistant depression (TRD). However, results remain heterogeneous with many patients without effective response. OBJECTIVE The aim of this SPECT study was to determine before treatment the predictive value of the connectivity of the stimulated area on further rTMS response in patients with TRD. METHODS Fifty-eight TRD patients performed a brain perfusion SPECT before high frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). A voxel based-analysis was achieved to compare connectivity of the left DLPFC in responders and non-responders using inter-regional correlations (p < 0.005, corrected for cluster volume). A multiple logistic regression model was thereafter used with the goal of establishing a predictive score. RESULTS Before rTMS, responders exhibited increased SPECT connectivity between the left DLPFC and the right cerebellum in comparison to non-responders, independently of age, gender, severity of depression, and severity of treatment resistance. The area under the curve for the combination of these two SPECT clusters to predict rTMS response was 0.756 (p < 0.005). CONCLUSIONS SPECT connectivity of the left DLPFC predicts rTMS response before treatment.
Collapse
Affiliation(s)
- Raphaëlle Richieri
- Department of Psychiatry, La Conception University Hospital, 13005 Marseille, France; Aix-Marseille Univ, EA 3279 - Self-perceived Health Assessment Research Unit, 13005 Marseille, France; Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Antoine Verger
- Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, APHM, 13005 Marseille, France; Department of Nuclear Medicine & Nancyclotep Imaging Platform, 54000 Nancy, France; IADI, INSERM U947, 54000 Nancy, France
| | - Laurent Boyer
- Aix-Marseille Univ, EA 3279 - Self-perceived Health Assessment Research Unit, 13005 Marseille, France; Department of Public Health, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Mohamed Boucekine
- Aix-Marseille Univ, EA 3279 - Self-perceived Health Assessment Research Unit, 13005 Marseille, France
| | - Anthony David
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Christophe Lançon
- Department of Psychiatry, La Conception University Hospital, 13005 Marseille, France; Aix-Marseille Univ, EA 3279 - Self-perceived Health Assessment Research Unit, 13005 Marseille, France
| | - Michel Cermolacce
- Department of Psychiatry, La Conception University Hospital, 13005 Marseille, France
| | - Eric Guedj
- Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, APHM, 13005 Marseille, France; Aix-Marseille University, INT, CNRS UMR 7289, 13005 Marseille, France; Aix-Marseille University, CERIMED, 13005 Marseille, France
| |
Collapse
|
16
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|