1
|
Ahmetov II, Valeeva EV, Yerdenova MB, Datkhabayeva GK, Bouzid A, Bhamidimarri PM, Sharafetdinova LM, Egorova ES, Semenova EA, Gabdrakhmanova LJ, Yusupov RA, Larin AK, Kulemin NA, Generozov EV, Hamoudi R, Kustubayeva AM, Rees T. KIBRA Gene Variant Is Associated with Ability in Chess and Science. Genes (Basel) 2023; 14:genes14010204. [PMID: 36672945 PMCID: PMC9859436 DOI: 10.3390/genes14010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The kidney and brain expressed protein (KIBRA) plays an important role in synaptic plasticity. Carriers of the T allele of the KIBRA (WWC1) gene rs17070145 C/T polymorphism have been reported to have enhanced spatial ability and to outperform individuals with the CC genotype in working memory tasks. Since ability in chess and science is directly related to spatial ability and working memory, we hypothesized that the KIBRA T allele would be positively associated with chess player status and PhD status in science. We tested this hypothesis in a study involving 2479 individuals (194 chess players, 119 PhD degree holders in STEM fields, and 2166 controls; 1417 males and 1062 females) from three ethnicities (236 Kazakhs, 1583 Russians, 660 Tatars). We found that frequencies of the T allele were significantly higher in Kazakh (66.9 vs. 55.1%; p = 0.024), Russian (44.8 vs. 32.0%; p = 0.0027), and Tatar (51.5 vs. 41.8%; p = 0.035) chess players compared with ethnically matched controls (meta-analysis for CT/TT vs. CC: OR = 2.05, p = 0.0001). In addition, none of the international chess grandmasters (ranked among the 80 best chess players in the world) were carriers of the CC genotype (0 vs. 46.3%; OR = 16.4, p = 0.005). Furthermore, Russian and Tatar PhD holders had a significantly higher frequency of CT/TT genotypes compared with controls (meta-analysis: OR = 1.71, p = 0.009). Overall, this is the first study to provide comprehensive evidence that the rs17070145 C/T polymorphism of the KIBRA gene may be associated with ability in chess and science, with the T allele exerting a beneficial effect.
Collapse
Affiliation(s)
- Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Correspondence:
| | - Elena V. Valeeva
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Meruert B. Yerdenova
- Department of Psychology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gaukhar K. Datkhabayeva
- Department of Biophysics, Biomedicine and Neuroscience, Center for Cognitive Neuroscience, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Amal Bouzid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Liliya M. Sharafetdinova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Emiliya S. Egorova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Leysan J. Gabdrakhmanova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Almira M. Kustubayeva
- Department of Biophysics, Biomedicine and Neuroscience, Center for Cognitive Neuroscience, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Tim Rees
- Department of Rehabilitation and Sport Science, Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH12 5BB, UK
| |
Collapse
|
2
|
Song L, Han X, Li Y, Han X, Zhao M, Li C, Wang P, Wang J, Dong Y, Cong L, Han X, Hou T, Liu K, Wang Y, Qiu C, Du Y. Thalamic gray matter volume mediates the association between KIBRA polymorphism and olfactory function among older adults: a population-based study. Cereb Cortex 2022; 33:3664-3673. [PMID: 35972417 PMCID: PMC10068283 DOI: 10.1093/cercor/bhac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
The kidney and brain expressed protein (KIBRA) rs17070145 polymorphism is associated with both structure and activation of the olfactory cortex. However, no studies have thus far examined whether KIBRA can be linked with olfactory function and whether brain structure plays any role in the association. We addressed these questions in a population-based cross-sectional study among rural-dwelling older adults. This study included 1087 participants derived from the Multidomain Interventions to Delay Dementia and Disability in Rural China, who underwent the brain MRI scans in August 2018 to October 2020; of these, 1016 took the 16-item Sniffin' Sticks identification test and 634 (62.40%) were defined with olfactory impairment (OI). Data were analyzed using the voxel-based morphometry analysis and general linear, logistic, and structural equation models. The KIBRA rs17070145 C-allele (CC or CT vs. TT genotype) was significantly associated with greater gray matter volume (GMV) mainly in the bilateral orbitofrontal cortex and left thalamus (P < 0.05) and with the multi-adjusted odds ratio of 0.73 (95% confidence interval 0.56-0.95) for OI. The left thalamic GMV could mediate 8.08% of the KIBRA-olfaction association (P < 0.05). These data suggest that the KIBRA rs17070145 C-allele is associated with a reduced likelihood of OI among older adults, partly mediated through left thalamic GMV.
Collapse
Affiliation(s)
- Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaodong Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yuanjing Li
- Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Pin Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Jiafeng Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China.,Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| |
Collapse
|
3
|
Wang J, Wu S, Sun Y, Lu J, Zhang J, Fang Y, Qing Z, Liang X, Zhang W, Chen Q, Zhang X, Zhang B. Brain microstructural alterations in the left precuneus mediate the association between KIBRA polymorphism and working memory in healthy adults: a diffusion kurtosis imaging study. Brain Imaging Behav 2022; 16:2487-2496. [PMID: 35854194 DOI: 10.1007/s11682-022-00703-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Kidney and brain expressed protein (KIBRA) rs17070145 is associated with working memory function and cognitive processes. However, the neural mechanisms underlying these associations are not fully understood. This study aimed to explore the effect of KIBRA polymorphism on brain microstructure and blood oxygenation level dependent (BOLD) fluctuations using diffusion kurtosis imaging (DKI) and resting-state functional magnetic resonance imaging (fMRI) in 163 young adults. We also investigated that whether the imaging alterations mediated the association between KIBRA gene and working memory performance. Voxel-based analysis of DKI data showed that KIBRA C-allele carriers exhibited increased axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) as well as decreased fractional anisotropy (FA), mean kurtosis (MK) and radial kurtosis (RK) compared with KIBRA TT homozygotes, primarily involving the prefrontal lobe, left precuneus and the left superior parietal white matter. Meanwhile, KIBRA C-allele carriers exhibited decreased amplitude of low-frequency fluctuation (ALFF) in the left precuneus compared to KIBRA TT homozygotes. Mediation analysis revealed that the DKI metrics (MK and RK) of the left precuneus mediated the effect of the KIBRA polymorphism on working memory performance. Moreover, the MK and RK in the left precuneus were positively correlated with ALFF in the same brain region. These findings suggest that abnormal DKI parameters may provide a gene-brain-behavior pathway in which KIBRA rs17070145 affects working memory by modulating brain microstructure in the left precuneus. This illustrates that DKI may provide additional biological information and reveal new insights into the neural mechanisms of the KIBRA polymorphism.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Sichu Wu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yi Sun
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | | | - Yu Fang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhao Qing
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Institute for Brain Sciences, Nanjing University, Nanjing, 210008, China
| | - Xue Liang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qian Chen
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Institute for Brain Sciences, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Kazantseva AV, Enikeeva RF, Davydova YD, Mustafin RN, Takhirova ZR, Malykh SB, Lobaskova MM, Tikhomirova TN, Khusnutdinova EK. The role of the KIBRA and APOE genes in developing spatial abilities in humans. Vavilovskii Zhurnal Genet Selektsii 2022; 25:839-846. [PMID: 35088019 PMCID: PMC8761577 DOI: 10.18699/vj21.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
In the contemporary high-tech society, spatial abilities predict individual life and professional success, especially in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. According to neurobiological hypotheses, individual differences in cognitive abilities may be attributed to the functioning of genes involved in the regulation of neurogenesis and synaptic plasticity. In addition, genome-wide association studies identified rs17070145 located in the KIBRA gene, which was associated with individual differences in episodic memory. Considering a significant role of genetic and environmental components in cognitive functioning, the present study aimed to estimate the main effect of NGF (rs6330), NRXN1 (rs1045881, rs4971648), KIBRA (rs17070145), NRG1 (rs6994992), BDNF (rs6265), GRIN2B (rs3764030), APOE (rs7412, rs429358), and SNAP25 (rs363050) gene polymorphisms and to assess the effect of gene-environment interactions on individual differences in spatial ability in individuals without cognitive decline aged 18–25 years (N = 1011, 80 % women). Spatial abilities were measured using a battery of cognitive tests including the assessment of “3D shape rotation” (mental rotation). Multiple regression analysis, which was carried out in the total sample controlling for sex, ethnicity and the presence of the “risk” APOE ε4 allele, demonstrated the association of the rs17070145 Т-allele in the KIBRA gene with enhanced spatial ability (β = 1.32; pFDR = 0.037) compared to carriers of the rs17070145 CC-genotype. The analysis of gene-environment interactions revealed that nicotine smoking (β = 3.74; p = 0.010) and urban/rural residency in childhood (β = –6.94; p = 0.0002) modulated the association of KIBRA rs17070145 and АРОЕ (rs7412, rs429358) gene variants with individual differences in mental rotation, respectively. The data obtained confirm the effect of the KIBRA rs17070145 Т-allele on improved cognitive functioning and for the first time evidence the association of the mentioned genetic variant with spatial abilities in humans. A “protective” effect of the APOE ε2 allele on enhanced cognitive functioning is observed only under certain conditions related to childhood rearing.
Collapse
Affiliation(s)
- A. V. Kazantseva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University, Department of molecular technologies
| | - R. F. Enikeeva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| | - Yu. D. Davydova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| | - R. N. Mustafin
- Bashkir State Medical University, Department of medical genetics and fundamental medicine
| | - Z. R. Takhirova
- Bashkir State University, Department of genetics and fundamental medicine
| | - S. B. Malykh
- Psychological Institute of the Russian Academy of Education; Lomonosov Moscow State University, Department of psychology
| | | | - T. N. Tikhomirova
- Psychological Institute of the Russian Academy of Education; Lomonosov Moscow State University, Department of psychology
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Lomonosov Moscow State University, Department of psychology
| |
Collapse
|