1
|
Lundervold A, Bjørsvik BR, Billing J, Berentsen B, Lied GA, Steinsvik EK, Hausken T, Pfabigan DM, Lundervold AJ. Brain Morphometry and Cognitive Features in the Prediction of Irritable Bowel Syndrome. Diagnostics (Basel) 2025; 15:470. [PMID: 40002622 PMCID: PMC11854466 DOI: 10.3390/diagnostics15040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a gut-brain disorder characterized by abdominal pain, altered bowel habits, and psychological distress. While brain-gut interactions are recognized in IBS pathophysiology, the relationship between brain morphometry, cognitive function, and clinical features remains poorly understood. The study aims to conduct the following: (i) to replicate previous univariate morphometric findings in IBS patients and conduct software comparisons; (ii) to investigate whether multivariate analysis of brain morphometric measures and cognitive performance can distinguish IBS patients from healthy controls (HCs), and evaluate the importance of structural and cognitive features in this discrimination. Methods: We studied 49 IBS patients and 29 HCs using structural brain magnetic resonance images (MRIs) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Brain morphometry was analyzed using FreeSurfer v6.0.1 and v7.4.1, with IBS severity assessed via the IBS-Severity Scoring System. We employed univariate, multivariate, and machine learning approaches with cross-validation. Results: The FreeSurfer version comparison revealed substantial variations in morphometric measurements, while morphometric measures alone showed limited discrimination between groups; combining morphometric and cognitive measures achieved 93% sensitivity in identifying IBS patients (22% specificity). The feature importance analysis highlighted the role of subcortical structures (the hippocampus, caudate, and putamen) and cognitive domains (recall and verbal skills) in group discrimination. Conclusions: Our comprehensive open-source framework suggests that combining brain morphometry and cognitive measures improves IBS-HC discrimination compared to morphometric measures alone. The importance of subcortical structures and specific cognitive domains supports complex brain-gut interaction in IBS, emphasizing the need for multimodal approaches and rigorous methodological considerations.
Collapse
Affiliation(s)
- Arvid Lundervold
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway;
- Medical-AI, Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Ben René Bjørsvik
- Medical-AI, Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Julie Billing
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| | - Birgitte Berentsen
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (B.B.); (T.H.)
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Gülen Arslan Lied
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Elisabeth K. Steinsvik
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (B.B.); (T.H.)
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Daniela M. Pfabigan
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| | - Astri J. Lundervold
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| |
Collapse
|
2
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. Interoceptive Processing in Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:7633. [PMID: 39062876 PMCID: PMC11277500 DOI: 10.3390/ijms25147633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic gastrointestinal symptoms in the absence of overt pathology and affect a significant percentage of the worldwide population. They are commonly accompanied by co-morbid psychiatric symptomatology and are associated with significant suffering and great healthcare services utilization. There is growing evidence that dysregulation of the gut-brain axis and disturbances in the processing of afferent interoceptive signals lie at the heart of these disorders. In this context, the aim of the current review was to detect and critically review original articles focusing on the role of interoception in the pathophysiology of FGIDs. Our search yielded 38 relevant studies. FGID patients displayed increased visceral sensitivity, enhanced attention to gastrointestinal interoceptive cues, and greater emotional arousal when coping with gut-derived sensations. Neuroimaging studies have shown significant structural and functional changes in regions of the interoceptive network, while molecular and genetic studies have revealed significant associations between interoceptive signaling and deficits in excitatory neurotransmission, altered endocrine and immune physiological pathways, and aberrant expression of transient receptor potential channel genes. Finally, there were emerging data suggesting that interoception-based interventions may reduce physical symptoms and improve quality of life and should be integrated into FGID clinical management practices.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
3
|
Han L, Xu Q, Meng P, Xu R, Nan J. Brain identification of IBS patients based on GBDT and multiple imaging techniques. Phys Eng Sci Med 2024; 47:651-662. [PMID: 38416373 DOI: 10.1007/s13246-024-01394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The brain biomarker of irritable bowel syndrome (IBS) patients is still lacking. The study aims to explore a new technology studying the brain alterations of IBS patients based on multi-source brain data. In the study, a decision-level fusion method based on gradient boosting decision tree (GBDT) was proposed. Next, 100 healthy subjects were used to validate the effectiveness of the method. Finally, the identification of brain alterations and the pain evaluation in IBS patients were carried out by the fusion method based on the resting-state fMRI and DWI for 46 patients and 46 controls selected randomly from 100 healthy subjects. The results showed that the method can achieve good classification between IBS patients and controls (accuracy = 95%) and pain evaluation of IBS patients (mean absolute error = 0.1977). Moreover, both the gain-based and the permutation-based evaluation instead of statistical analysis showed that left cingulum bundle contributed most significantly to the classification, and right precuneus contributed most significantly to the evaluation of abdominal pain intensity in the IBS patients. The differences seem to suggest a probable but unexplored separation about the central regions between the identification and progression of IBS. This finding may provide one new thought and technology for brain alteration related to IBS.
Collapse
Affiliation(s)
- Li Han
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Qian Xu
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Panting Meng
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Ruyun Xu
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Jiaofen Nan
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, Castro Ceron JI, Balaji A, Abrahão A, Lima Pessôa B. The Role of the Insula in Chronic Pain and Associated Structural Changes: An Integrative Review. Cureus 2024; 16:e58511. [PMID: 38770492 PMCID: PMC11103916 DOI: 10.7759/cureus.58511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Chronic pain affects a substantial portion of the global population, significantly impacting quality of life and well-being. This condition involves complex mechanisms, including dysfunction of the autonomic nervous system, which plays a crucial role in pain perception. The insula, a key brain region involved in pain processing, plays a critical role in pain perception and modulation. Lesions in the insula can result in pain asymbolia, where pain perception remains intact but emotional responses are inappropriate. The insula is anatomically and functionally divided into anterior and posterior regions, with the posterior insula processing nociceptive input based on intensity and location before relaying it to the anterior insula for emotional mediation. Understanding the insula's intricate role in pain processing is crucial, as it is involved in encoding prediction errors and mediating emotional dimensions of pain perception. The focus of this review was on synthesizing existing literature on the role of the insula in chronic pain and associated structural changes. The goal was to integrate findings from various sources to provide a comprehensive overview of the topic. The search strategy included a combination of Medical Subject Headings (MeSH) and relevant keywords related to insula and chronic pain. The following databases were surveyed: PubMed, Embase, Scopus, and Web of Science. We identified a total of 2515 articles, and after following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline based on eligibility criteria, 46 articles were used to synthesize this review. Our study highlights the pivotal role of the insula in chronic pain processing and associated structural changes, integrating findings from diverse studies and neuroimaging investigations. Beyond mere pain sensation, the insula contributes to emotional awareness, attention, and salience detection within the pain network. Various chronic pain conditions reveal alterations in insular activity and connectivity, accompanied by changes in gray matter volume and neurochemical profiles. Interventions targeting the insula show promise in alleviating chronic pain symptoms. However, further research is needed to understand underlying mechanisms, which can aid in developing more effective therapeutic interventions for pain.
Collapse
Affiliation(s)
| | - Dulci Petrus
- Family Health, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | | | - Anna Pogodina
- Medicine and Surgery, University of Buckingham, Buckingham, GBR
| | | | - Yusuf A Ahmed
- Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Jose Ittay Castro Ceron
- Academic Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Pachuca, MEX
| | - Aishwariya Balaji
- General Practice, Government Kilpauk Medical College and Hospital, Chennai, IND
| | - Ana Abrahão
- Public Health, Fluminense Federal University, Niterói, BRA
| | | |
Collapse
|
5
|
Billing J, Berentsen B, Lundervold A, Hillestad EMR, Lied GA, Hausken T, Lundervold AJ. Cognitive function in patients with irritable bowel syndrome: impairment is common and only weakly correlated with depression/anxiety and severity of gastrointestinal symptoms. Scand J Gastroenterol 2024; 59:25-33. [PMID: 37727887 DOI: 10.1080/00365521.2023.2256916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE To investigate cognitive function in patients with irritable bowel syndrome (IBS) and its relation to anxiety/depression and severity of gastrointestinal (GI) symptoms. METHODS Patients with IBS (n = 65) and healthy controls (HCs, n = 37) performed the ten subtests of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Age-normed index scores of five cognitive domains (Immediate memory, Visuospatial function, Language function, Attention, Recall) and a total (Fullscale) score were derived from the performance. Emotional function was assessed using the Hospital Anxiety and Depression Scale (HADS), and the IBS Symptom Scoring System (IBS-SSS) was used to define the severity of GI symptoms. RESULTS Patients with IBS reported significantly higher scores than the HC group on symptom measures of anxiety and depression, and significantly lower scores on the Immediate memory, Recall, and Fullscale RBANS indexes. Approximately 30% of the IBS patients obtained index scores at least one standard deviation below the population mean, and more than 50% scored above the screening threshold for an anxiety disorder. The severity of GI symptoms was significantly correlated with the severity level of anxiety symptoms (p=.006), but neither the severity level of emotional nor GI symptoms was significantly correlated with the RBANS index scores in the IBS group. CONCLUSION Cognitive and emotional function were more severely affected in patients with IBS than in HCs. The weak correlation between the two functional areas suggests that both should be assessed as part of a clinical examination of patients with IBS.
Collapse
Affiliation(s)
- Julie Billing
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Birgitte Berentsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Eline M R Hillestad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gülen A Lied
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
He S, Peng Y, Chen X, Ou Y. Causality between inflammatory bowel disease and the cerebral cortex: insights from Mendelian randomization and integrated bioinformatics analysis. Front Immunol 2023; 14:1175873. [PMID: 37588593 PMCID: PMC10425804 DOI: 10.3389/fimmu.2023.1175873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic, progressive, and recurrent intestinal condition that poses a significant global health burden. The high prevalence of neuropsychiatric comorbidities in IBD necessitates the development of targeted management strategies. Methods Leveraging genetic data from genome-wide association studies and Immunochip genotype analyses of nearly 150,000 individuals, we conducted a two-sample Mendelian randomization study to elucidate the driving force of IBD, UC, and CD on cortical reshaping. Genetic variants mediating the causality were collected to disclose the biological pathways linking intestinal inflammation to brain dysfunction. Results Here, 115, 69, and 98 instrumental variables genetically predicted IBD, UC, and CD. We found that CD significantly decreased the surface area of the temporal pole gyrus (β = -0.946 mm2, P = 0.005, false discovery rate-P = 0.085). Additionally, we identified suggestive variations in cortical surface area and thickness induced by exposure across eight functional gyri. The top 10 variant-matched genes were STAT3, FOS, NFKB1, JAK2, STAT4, TYK2, SMAD3, IL12B, MYC, and CCL2, which are interconnected in the interaction network and play a role in inflammatory and immune processes. Conclusion We explore the causality between intestinal inflammation and altered cortical morphology. It is likely that neuroinflammation-induced damage, impaired neurological function, and persistent nociceptive input lead to morphological changes in the cerebral cortex, which may trigger neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shubei He
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofang Chen
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Ou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Increased GABAergic projections in the paraventricular nucleus regulate colonic hypersensitivity via oxytocin in a rat model of irritable bowel syndrome. Neuroreport 2023; 34:108-115. [PMID: 36608164 DOI: 10.1097/wnr.0000000000001867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Irritable bowel syndrome (IBS) is characterized by gastrointestinal dysmotility and visceral hyperalgesia, and the impaired brain-gut axis is accepted as a crucial cause for the onset of IBS. The objective of this study is to investigate the effects of the adaptive changes in the central neural system induced by stress on IBS-like syndromes in rats. Long-term water avoidance stress (WAS) was used to prepare IBS animals. The changes in neuronal excitation and GABA expression were shown by immunohistochemistry. The mRNA and protein expressions of neurotransmitters were detected with Quantitative reverse-transcription PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA). The intestinal transit time, fecal moisture content, and abdominal withdrawal reflex scores of rats were recorded to monitor intestinal motility and visceral hyperalgesia. In the WAS-treated rats with enhanced intestinal motility and visceral hypersensitivity, more GABAergic projections were found in the paraventricular nucleus (PVN) of the hypothalamus, which inhibited the firing rate of neurons and decreased the expression of oxytocin. Exogenous oxytocin improved gut motility and decreased AWR scores. The inhibition of oxytocin by the adaptive GABAergic projection in the PVN might be an important mediator of IBS, which indicates a potential novel therapeutic target.
Collapse
|
8
|
Lu J, Huang R, Peng Y, Zhang J, Liang K, Wang Y, Feng Y, Wang Z. Mendelian Randomization Analyses Accounting for Causal Effect of COVID-19 on Brain Imaging-Derived Phenotypes. J Alzheimers Dis 2023; 96:1059-1070. [PMID: 37955088 DOI: 10.3233/jad-230626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has been a major challenge to global health and a financial burden. Little is known regarding the possible causal effects of COVID-19 on the macro- and micro-structures of the human brain. OBJECTIVE To determine the causal links between susceptibility, hospitalization, and the severity of COVID-19 and brain imaging-derived phenotypes (IDPs). METHODS Mendelian randomization (MR) analyses were performed to investigate the causal effect of three COVID-19 exposures (SARS-CoV-2 infection, hospitalized COVID-19, and critical COVID-19) on brain structure employing summary datasets of genome-wide association studies. RESULTS In terms of cortical phenotypes, hospitalization due to COVID-19 was associated with a global decrease in the surface area (SA) of the cortex structure (β= -624.77, 95% CI: -1227.88 to -21.66, p = 0.042). At the regional level, SARS-CoV-2 infection was found to have a nominally causal effect on the thickness (TH) of the postcentral region (β= -0.004, 95% CI: -0.007 to -0.001, p = 0.01), as well as eight other IDPs. Hospitalized COVID-19 has a nominally causal relationship with TH of postcentral (β= -0.004, 95% CI: -0.007 to -0.001, p = 0.01) and other 6 IDPs. The nominally causal effects of critical COVID-19 on TH of medial orbitofrontal (β=0.004, 95% CI: 0.001to 0.007, p = 0.004) and other 7 IDPs were revealed. CONCLUSIONS Our study provides compelling genetic evidence supporting causal relationships between three COVID-19 traits and brain IDPs. This discovery holds promise for enhancing predictions and interventions in brain imaging.
Collapse
Affiliation(s)
- Jiajie Lu
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Rihong Huang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuecheng Peng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
10
|
Yu Z, Liu LY, Lai YY, Tian ZL, Yang L, Zhang Q, Liang FR, Yu SY, Zheng QH. Altered Resting Brain Functions in Patients With Irritable Bowel Syndrome: A Systematic Review. Front Hum Neurosci 2022; 16:851586. [PMID: 35572000 PMCID: PMC9105452 DOI: 10.3389/fnhum.2022.851586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background The neural activity of irritable bowel syndrome (IBS) patients in the resting state without any intervention has not been systematically studied. The purpose of this study was to compare the resting-state brain functions of IBS patients with healthy controls (HCs). Methods The published neuroimage studies were obtained from electronic databases including PubMed, EMBASE, PsycINFO, Web of Science Core, CNKI Database, Wanfang Database, VIP Database, and CBMdisc. Search dates were from inception to March 14th, 2022. The studies were identified by the preidentified inclusion and exclusion criteria. Two independent reviewers compiled the studies and evaluated them for quality and bias. Results Altogether 22 fMRI studies were included in this review. The risk of bias of the included studies was generally low. The findings indicated that in IBS patients, increased or decreased brain areas were mostly associated with visceral sensations, emotional processing, and pain processing. According to brain network research, IBS may exhibit anomalies in the DMN, CEN, and emotional arousal networks. The fluctuations in emotion (anxiety, sadness) and symptoms in IBS patients were associated with alterations in the relevant brain regions. Conclusion This study draws a preliminary conclusion that there are insufficient data to accurately distinguish the different neurological features of IBS in the resting state. Additional high-quality research undertaken by diverse geographic regions and teams is required to reach reliable results regarding resting-state changed brain regions in IBS.
Collapse
Affiliation(s)
- Zheng Yu
- College of Medical Information and Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Ying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan-Yuan Lai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Lei Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fan-Rong Liang
- College of Medical Information and Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Yi Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Si-Yi Yu,
| | - Qian-Hua Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qian-Hua Zheng,
| |
Collapse
|
11
|
Aziz MNM, Kumar J, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM. Irritable Bowel Syndrome, Depression, and Neurodegeneration: A Bidirectional Communication from Gut to Brain. Nutrients 2021; 13:nu13093061. [PMID: 34578939 PMCID: PMC8468817 DOI: 10.3390/nu13093061] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with irritable bowel syndrome (IBS) are increasingly presenting with a wide range of neuropsychiatric symptoms, such as deterioration in gastroenteric physiology, including visceral hypersensitivity, altered intestinal membrane permeability, and gastrointestinal motor dysfunction. Functional imaging of IBS patients has revealed several abnormalities in various brain regions, such as significant activation of amygdala, thinning of insular and anterior cingulate cortex, and increase in hypothalamic gray matter, which results in poor psychiatric and cognitive outcomes. Interrelations between the enteric and central events in IBS-related gastrointestinal, neurological, and psychiatric pathologies have compelled researchers to study the gut-brain axis-a bidirectional communication that maintains the homeostasis of the gastrointestinal and central nervous system with gut microbiota as the protagonist. Thus, it can be disrupted by any alteration owing to the gut dysbiosis or loss of diversity in microbial composition. Available evidence indicates that the use of probiotics as a part of a balanced diet is effective in the management of IBS and IBS-associated neurodegenerative and psychiatric comorbidities. In this review, we delineate the pathogenesis and complications of IBS from gastrointestinal and neuropsychiatric standpoints while also discussing the neurodegenerative events in enteric and central nervous systems of IBS patients and the therapeutic potential of gut microbiota-based therapy established on clinical and preclinical data.
Collapse
Affiliation(s)
- Muhammad Nazirul Mubin Aziz
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
| | - Khairul Najmi Muhammad Nawawi
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Raja Affendi Raja Ali
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza M. Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.N.M.A.); (J.K.)
- Gut Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.N.M.N.); (R.A.R.A.)
- Correspondence:
| |
Collapse
|
12
|
Huang Q, Ren S, Zhang T, Li J, Jiang D, Xiao J, Hua F, Xie F, Guan Y. Aging-Related Modular Architectural Reorganization of the Metabolic Brain Network. Brain Connect 2021; 12:432-442. [PMID: 34210172 DOI: 10.1089/brain.2021.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Modules in brain network represent groups of brain regions that are collectively involved in one or more cognitive domains. Exploring aging-related reorganization of the brain modular architecture using metabolic brain network could further our understanding about aging-related neuromechanism and neurodegenerations. Materials and Methods: In this study, 432 subjects who performed 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) were enrolled and divided into young and old adult groups, as well as female and male groups. The modular architecture was detected, and the connector and hub nodes were identified to explore the topological role of the brain regions based on the metabolic brain network. Results: This study revealed that human metabolic brain network was modular and could be clustered into three modules. The modular architecture was reorganized from young to old ages with regions related to sensorimotor function clustered into the same module; and the number of connector nodes was reduced and most connector nodes were localized in temporo-occipital areas related to visual and auditory functions in old ages. The major gender difference is that the metabolic brain network was delineated into four modules in old female group with the nodes related to sensorimotor function split into two modules. Discussion: Those findings suggest aging is associated with reorganized brain modular architecture. Clinical Trial Registration number: ChiCTR2000036842.
Collapse
Affiliation(s)
- Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Duan S, Liu L, Li G, Wang J, Hu Y, Zhang W, Tan Z, Jia Z, Zhang L, von Deneen KM, Zhang Y, Nie Y, Cui G. Altered Functional Connectivity Within and Between Salience and Sensorimotor Networks in Patients With Functional Constipation. Front Neurosci 2021; 15:628880. [PMID: 33776637 PMCID: PMC7991789 DOI: 10.3389/fnins.2021.628880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Functional constipation (FCon) is a common functional gastrointestinal disorder. A considerable portion of patients with FCon is associated with anxiety/depressive status (FCAD). Previous neuroimaging studies mainly focused on patients with FCon without distinguishing FCAD from FCon patients without anxiety/depressive status (FCNAD). Differences in brain functions between these two subtypes remain unclear. Thus, we employed resting-state functional magnetic resonance imaging (RS-fMRI) and graph theory method to investigate differences in brain network connectivity and topology in 41 FCAD, 42 FCNAD, and 43 age- and gender-matched healthy controls (HCs). FCAD/FCNAD showed significantly lower normalized clustering coefficient and small-world-ness. Both groups showed altered nodal degree/efficiency mainly in the rostral anterior cingulate cortex (rACC), precentral gyrus (PreCen), supplementary motor area (SMA), and thalamus. In the FCAD group, nodal degree in the SMA was negatively correlated with difficulty of defecation, and abdominal pain was positively correlated with nodal degree/efficiency in the rACC, which had a lower within-module nodal degree. The salience network (SN) exhibited higher functional connectivity (FC) with the sensorimotor network (SMN) in FCAD/FCNAD, and FC between these two networks was negatively correlated with anxiety ratings in FCAD group. Additionally, FC of anterior insula (aINS)-rACC was only correlated with constipation symptom (i.e., abdominal pain) in the FCNAD group. In the FCAD group, FCs of dorsomedial prefrontal cortex-rACC, PreCen-aINS showed correlations with both constipation symptom (i.e., difficulty of defecation) and depressive status. These findings indicate the differences in FC of the SN-SMN between FCAD and FCNAD and provide neuroimaging evidence based on brain function, which portrays important clues for improving new treatment strategies.
Collapse
Affiliation(s)
- Shijun Duan
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lei Liu
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Zhenzhen Jia
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Lei Zhang
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Karen M. von Deneen
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
14
|
Mao CP, Chen FR, Sun HH, Shi MJ, Yang HJ, Li XH, Ding D. Larger regional volume of the thalamus in diarrhea-predominant irritable bowel syndrome: a cross-sectional study. Brain Imaging Behav 2019; 14:2302-2310. [PMID: 31468373 DOI: 10.1007/s11682-019-00181-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a relay center between the cerebral cortex and various subcortical brain areas, the thalamus is repeatedly associated with the dysfunction of brain-gut interaction in patients with irritable bowel syndrome (IBS). However, the regional morphological alterations of the thalamus in IBS are not well defined. We acquired structural magnetic resonance data from 34 patients with IBS and 34 demographically similar healthy subjects. Data processing was performed using FMRIB's Integrated Registration and Segmentation Tool (FIRST). Volumetric analysis and surface-based vertex analysis were both carried out to characterize the morphology of the thalamus and other subcortical structures. Our results suggested that the majority (31 cases) of the patients with IBS had diarrhea-predominant symptoms. Volumetric analysis revealed a larger normalized volume of the right thalamus and left caudate nucleus in patients with IBS than in healthy controls. Surface analysis indicated that the difference arose mainly from the laterodorsal nucleus of the right thalamus, and the body of the left caudate nucleus. In addition, patients with IBS had different hemispheric asymmetries of the thalamus (rightward) and caudate nucleus (leftward) from controls (leftward for the thalamus and rightward for the caudate nucleus). In general, our results indicated that patients with diarrhea-predominant IBS had enlarged thalamus and caudate nucleus volumes, as well as altered hemispheric asymmetries of these two structures, compared with healthy controls. The neuroimaging evidence of these structural alterations helps clarify the underlying pathophysiology of diarrhea-predominant IBS.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Fen Rong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, Xi'an, Shaanxi, People's Republic of China
| | - Hong Hong Sun
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China.
| | - Mei Juan Shi
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Hua Juan Yang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Hui Li
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| | - Dun Ding
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, 157, Xiwu Road, 710004, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|