1
|
Zhang C, Wu Y, Hu W, Li G, Yang C, Wu T. Frequency-band specific directed connectivity networks reveal functional disruptions and pathogenic patterns in temporal lobe epilepsy: a MEG study. Sci Rep 2025; 15:12326. [PMID: 40210922 PMCID: PMC11985499 DOI: 10.1038/s41598-025-90299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
This study investigates the network mechanisms of temporal lobe epilepsy (TLE) using MEG data, focusing on directed connectivity networks across different frequency bands. Unlike previous studies that primarily localize epileptogenic zones, this research aims to explore whole-brain network differences between left TLE (lTLE), right TLE (rTLE), and healthy controls (HCs). MEG data from 13 lTLE patients, 21 rTLE patients, and 14 HCs were source-reconstructed to 116 brain regions (AAL116). Directed Transfer Function (DTF) was used to construct directed connectivity networks, followed by networks and graph-theoretical analyses. The results indicate that, compared to HCs, TLE subjects exhibited a significant increase in average connectivity strength in the Low Gamma band. The connectivity patterns across frequency bands in TLE patients were found to be unstable. Both HC and TLE subjects demonstrated left hemisphere lateralization. In the mid-to-low frequency bands, TLE subjects showed increases in global clustering coefficient (GCC), global characteristic path length (GCPL), and local efficiency (LE) compared to HCs, which is attributed to enhanced synchronization between local brain regions in TLE subjects.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yutong Wu
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Tiantan Hospital, Beijing, 100070, China
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Chunlan Yang
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Ting Wu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
2
|
Lu ZK, Huang Y, Wang B, Zheng Q, Bai PY, Guo WL, Bian WJ, Niu JL. Altered resting-state functional brain activity in patients with chronic post-burn pruritus. Burns 2025; 51:107305. [PMID: 39546823 DOI: 10.1016/j.burns.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Pruritus, a common symptom of burn wounds, arises from skin tissue damage and abnormal tissue healing. Chronic post-burn pruritus (CPBP) is defined as itching that persists for six weeks or more. The brain mechanisms underlying CPBP are not understood adequately. This study aims to explore abnormal brain function in CPBP patients and identify potential pathogenesis of pruritus. MATERIALS AND METHODS Twenty patients with CPBP and twenty healthy controls (HCs) participated in the study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. Brain activity was evaluated using regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) measures. Preprocessing of fMRI data involved steps such as slice timing correction, motion correction, and nuisance regression to account for physiological noise and head motion. Statistical analyses included two-sample t-tests to compare ReHo, ALFF, and fALFF values between CPBP patients and HCs, with age as a covariate, and Spearman correlation analysis to explore relationships between brain activity measures and clinical characteristics. RESULTS The study revealed significant differences in brain activity between CPBP patients and HCs. CPBP patients exhibited altered higher ReHo in regions including the bilateral middle frontal gyrus, medial superior frontal gyrus, precuneus, left insula, right caudate, and bilateral cerebellar tonsils, with decreased ReHo in the right precentral gyrus. ALFF analysis showed increased activity in the bilateral middle frontal gyrus, medial superior frontal gyrus, right precuneus, and right inferior frontal gyrus, and decreased ALFF in the left precentral gyrus and right postcentral gyrus. fALFF values were notably higher in the bilateral medial superior frontal gyrus and precuneus. Several brain regions with significant differences in ReHo, ALFF, and fALFF were extensively correlated with the burned area and pruritus scale scores. CONCLUSION Our data suggest that patients with CPBP show alterations in ReHo, ALFF, and fALFF values primarily in brain regions associated with the default mode network and sensorimotor areas. These results may provide valuable insights relevant to the neuropathology of CPBP.
Collapse
Affiliation(s)
- Zhi-Kai Lu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; CT Room, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Yin Huang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Qian Zheng
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Pei-Yi Bai
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wan-Li Guo
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wen-Jin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Liang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
3
|
Zhong J, Wu F, Wu H, He H, Zhang Z, Fan N. Abnormal resting-state functional connectivity of the right anterior cingulate cortex in chronic ketamine users and its correlation with cognitive impairments. Asian J Psychiatr 2024; 102:104199. [PMID: 39298913 DOI: 10.1016/j.ajp.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic ketamine use leads to cognitive impairments, however, the neural mechanisms underpinning these impairments are still unclear. AIMS Many studies showed Anterior cingulate cortex (ACC)is strongly involved in cognition and drug addiction, as supported by our previous studies. The objective of this study was to assess the variations in resting-state functional connectivity (FC) changes in the right anterior cingulate cortex (ACC) of chronic ketamine users (CKUs) and their relationship with cognitive performance. METHODS The study enrolled 28 chronic ketamine users (CKUs) and 30 healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from both groups. Cognitive functions were evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs demonstrated significantly poorer cognitive performance than HCs in various cognitive domains, including Visual Learning, Speed of Processing, Working Memory, and the composite score of MCCB. Group-level comparisons revealed that CKUs exhibited enhanced functional connectivity between the right ACC and the right postcentral gyrus (PCG) compared to HCs. There was a positive relationship between the connectivity of right ACC-PCG and reasoning and problem-solving score, but there was no significant association with the characteristics of ketamine use. CONCLUSION CKUs showed enhanced connectivity between the right ACC and the right PCG. This enhanced functional connectivity may indicate functional compensation for cognitive deficits in CKUs, especially for reasoning and problem-solving impairments in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Fengchun Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Huawang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Hongbo He
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Ni Fan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China.
| |
Collapse
|
4
|
Koyun AH, Stock AK, Beste C. Neurophysiological mechanisms underlying the differential effect of reward prospect on response selection and inhibition. Sci Rep 2023; 13:10903. [PMID: 37407656 DOI: 10.1038/s41598-023-37524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Reward and cognitive control play crucial roles in shaping goal-directed behavior. Yet, the behavioral and neural underpinnings of interactive effects of both processes in driving our actions towards a particular goal have remained rather unclear. Given the importance of inhibitory control, we investigated the effect of reward prospect on the modulatory influence of automatic versus controlled processes during response inhibition. For this, a performance-contingent monetary reward for both correct response selection and response inhibition was added to a Simon NoGo task, which manipulates the relationship of automatic and controlled processes in Go and NoGo trials. A neurophysiological approach was used by combining EEG temporal signal decomposition and source localization methods. Compared to a non-rewarded control group, rewarded participants showed faster response execution, as well as overall lower response selection and inhibition accuracy (shifted speed-accuracy tradeoff). Interestingly, the reward group displayed a larger interference of the interactive effects of automatic versus controlled processes during response inhibition (i.e., a larger Simon NoGo effect), but not during response selection. The reward-specific behavioral effect was mirrored by the P3 amplitude, underlining the importance of stimulus-response association processes in explaining variability in response inhibition performance. The selective reward-induced neurophysiological modulation was associated with lower activation differences in relevant structures spanning the inferior frontal and parietal cortex, as well as higher activation differences in the somatosensory cortex. Taken together, this study highlights relevant neuroanatomical structures underlying selective reward effects on response inhibition and extends previous reports on the possible detrimental effect of reward-triggered performance trade-offs on cognitive control processes.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany.
- Biopsychology, Faculty of Psychology, School of Science, TU Dresden, Dresden, Germany.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Wu J, Cao Y, Li M, Li B, Jia X, Cao L. Altered intrinsic brain activity in patients with CSF1R-related leukoencephalopathy. Brain Imaging Behav 2022; 16:1842-1853. [PMID: 35389179 DOI: 10.1007/s11682-022-00646-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
CSF1R-related leukoencephalopathy is an adult-onset white matter disease with high disability and mortality, while little is known about its pathogenesis. This study introduced amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) based on resting-state functional magnetic resonance imaging(rsfMRI) to compare the spontaneous brain activities of patients and healthy controls, aiming to enhance our understanding of the disease. RsfMRI was performed on 16 patients and 23 healthy controls, and preprocessed for calculation of ALFF and ReHo. Permutation tests with threshold free cluster enhancement (TFCE) was applied for comparison (number of permutations = 5,000). The TFCE significance threshold was set at [Formula: see text] < 0.05. In addition, 10 was set as the minimum cluster size. Compared to healthy controls, the patient group showed decreased ALFF in right paracentral lobule, and increased ALFF in bilateral insula, hippocampus, thalamus, supramarginal and precentral gyrus, right inferior, middle and superior frontal gyrus, right superior and middle occipital gyrus, as well as left parahippocampal gyrus, fusiform, middle occipital gyrus and angular gyrus. ReHo was decreased in right supplementary motor area, paracentral lobule and precentral gyrus, while increased in right superior occipital gyrus and supramarginal gyrus, left parahippocampal gyrus, hippocampus, fusiform, middle occipital gyrus and angular gyrus, as well as bilateral middle occipital gyrus and midbrain. These results revealed altered spontaneous brain activities in CSF1R-related leukoencephalopathy, especially in limbic system and motor cortex, which may shed light on underlying mechanisms.
Collapse
Affiliation(s)
- Jingying Wu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xize Jia
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Temporally dynamic neural correlates of drug cue reactivity, response inhibition, and methamphetamine-related response inhibition in people with methamphetamine use disorder. Sci Rep 2022; 12:3567. [PMID: 35246553 PMCID: PMC8897423 DOI: 10.1038/s41598-022-05619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Cue-induced drug craving and disinhibition are two essential components of continued drug use and relapse in substance use disorders. While these phenomena develop and interact across time, the temporal dynamics of their underlying neural activity remain under-investigated. To explore these dynamics, an analysis of time-varying activation was applied to fMRI data from 62 men with methamphetamine use disorder in their first weeks of recovery in an abstinence-based treatment program. Using a mixed block-event, factorial cue-reactivity/Go-NoGo task and a sliding window across the task duration, dynamically-activated regions were identified in three linear mixed effects models (LMEs). Habituation to drug cues across time was observed in the superior temporal gyri, amygdalae, left hippocampus, and right precuneus, while response inhibition was associated with the sensitization of temporally-dynamic activations across many regions of the inhibitory frontoparietal network. Methamphetamine-related response inhibition was associated with temporally-dynamic activity in the parahippocampal gyri and right precuneus (corrected p-value < 0.001), which show a declining cue-reactivity contrast and an increasing response inhibition contrast. Overall, the declining craving-related activations (habituation) and increasing inhibition-associated activations (sensitization) during the task duration suggest the gradual recruitment of response inhibitory processes and a concurrent habituation to drug cues in areas with temporally-dynamic methamphetamine-related response inhibition. Furthermore, temporally dynamic cue-reactivity and response inhibition were correlated with behavioral and clinical measures such as the severity of methamphetamine use and craving, impulsivity and inhibitory task performance. This exploratory study demonstrates the time-variance of the neural activations undergirding cue-reactivity, response inhibition, and response inhibition during exposure to drug cues, and suggests a method to assess this dynamic interplay. Analyses that can capture temporal fluctuations in the neural substrates of drug cue-reactivity and response inhibition may prove useful for biomarker development by revealing the rate and pattern of sensitization and habituation processes, and may inform mixed cue-exposure intervention paradigms which could promote habituation to drug cues and sensitization in inhibitory control regions.
Collapse
|
7
|
Karamaouna P, Zouraraki C, Giakoumaki SG. Cognitive Functioning and Schizotypy: A Four-Years Study. Front Psychiatry 2020; 11:613015. [PMID: 33488431 PMCID: PMC7820122 DOI: 10.3389/fpsyt.2020.613015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Although there is ample evidence from cross-sectional studies indicating cognitive deficits in high schizotypal individuals that resemble the cognitive profile of schizophrenia-spectrum patients, there is still lack of evidence by longitudinal/follow-up studies. The present study included assessments of schizotypal traits and a wide range of cognitive functions at two time points (baseline and 4-years assessments) in order to examine (a) their stability over time, (b) the predictive value of baseline schizotypy on cognition at follow-up and (c) differences in cognition between the two time points in high negative schizotypal and control individuals. Only high negative schizotypal individuals were compared with controls due to the limited number of participants falling in the other schizotypal groups at follow-up. Seventy participants (mean age: 36.17; 70% females) were assessed at baseline and follow-up. Schizotypal traits were evaluated with the Schizotypal Personality Questionnaire. We found that schizotypal traits decreased over time, except in a sub-group of participants ("schizotypy congruent") that includes individuals who consistently meet normative criteria of inclusion in either a schizotypal or control group. In these individuals, negative schizotypy and aspects of cognitive-perceptual and disorganized schizotypy remained stable. The stability of cognitive functioning also varied over time: response inhibition, aspects of cued attention switching, set-shifting and phonemic/semantic verbal fluency improved at follow-up. High negative schizotypy at baseline predicted poorer response inhibition and semantic switching at follow-up while high disorganized schizotypy predicted poorer semantic processing and complex processing speed/set-shifting. The between-group analyses revealed that response inhibition, set-shifting and complex processing speed/set-shifting were poorer in negative schizotypals compared with controls at both time points, while maintaining set and semantic switching were poorer only at follow-up. Taken together, the findings show differential stability of the schizotypal traits over time and indicate that different aspects of schizotypy predict a different pattern of neuropsychological task performance during a 4-years time window. These results are of significant use in the formulation of targeted early-intervention strategies for high-risk populations.
Collapse
Affiliation(s)
- Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece.,University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| |
Collapse
|