1
|
Tian W, Zhao D, Ding J, Zhan S, Zhang Y, Etkin A, Wu W, Yuan TF. An electroencephalographic signature predicts craving for methamphetamine. Cell Rep Med 2024; 5:101347. [PMID: 38151021 PMCID: PMC10829728 DOI: 10.1016/j.xcrm.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.
Collapse
Affiliation(s)
- Weiwen Tian
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jinjun Ding
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Shulu Zhan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Amit Etkin
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA; Alto Neuroscience, Inc., Los Altos, CA 94022, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA; Alto Neuroscience, Inc., Los Altos, CA 94022, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
2
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
3
|
Li X, Cong J, Liu K, Wang P, Sun M, Wei B. Aberrant intrinsic functional brain topology in methamphetamine-dependent individuals after six-months of abstinence. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19565-19583. [PMID: 38052615 DOI: 10.3934/mbe.2023867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Our aim was to explore the aberrant intrinsic functional topology in methamphetamine-dependent individuals after six months of abstinence using resting-state functional magnetic imaging (rs-fMRI). Eleven methamphetamines (MA) abstainers who have abstained for six months and eleven healthy controls (HC) were recruited for rs-fMRI examination. The graph theory and functional connectivity (FC) analysis were employed to investigate the aberrant intrinsic functional brain topology between the two groups at multiple levels. Compared with the HC group, the characteristic shortest path length ($ {L}_{p} $) showed a significant decrease at the global level, while the global efficiency ($ {E}_{glob} $) and local efficiency ($ {E}_{loc} $) showed an increase considerably. After FDR correction, we found significant group differences in nodal degree and nodal efficiency at the regional level in the ventral attentional network (VAN), dorsal attentional network (DAN), somatosensory network (SMN), visual network (VN) and default mode network (DMN). In addition, the NBS method presented the aberrations in edge-based FC, including frontoparietal network (FPN), subcortical network (SCN), VAN, DAN, SMN, VN and DMN. Moreover, the FC of large-scale functional brain networks revealed a decrease within the VN and SCN and between the networks. These findings suggest that some functions, e.g., visual processing skills, object recognition and memory, may not fully recover after six months of withdrawal. This leads to the possibility of relapse behavior when confronted with MA-related cues, which may contribute to explaining the relapse mechanism. We also provide an imaging basis for revealing the neural mechanism of MA-dependency after six months of abstinence.
Collapse
Affiliation(s)
- Xiang Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Min Sun
- Shandong Detoxification Monitoring and Treatment Institute, Zibo 255311, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| |
Collapse
|