1
|
Zhang H, Liu Y, Zhang Z, Jiang M, Tao X, Lee XN, Fang Z, Song X, Silkiss RZ, Fan X, Zhou H. Neuroimaging in thyroid eye disease: A systematic review. Autoimmun Rev 2024; 23:103667. [PMID: 39396626 DOI: 10.1016/j.autrev.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid eye disease (TED) is an organ-specific autoimmune disease secondary largely to hyperthyroid Graves' disease, which profoundly affects patients' visual function, appearance, and physical and mental well-being. Emerging neuroimaging studies have reported alterations in the brains of patients with TED, suggesting that the impact of this autoimmune disease may extend beyond the orbit. This systematic review aims to consolidate the neuroimaging evidence that describes the brain alterations of TED. We analyzed information from thirty-one related studies involving 1349 TED patients and 710 healthy controls, employing multimodal neuroimaging techniques such as structural magnetic resonance imaging (MRI), functional MRI, diffusion MRI, and metabolic MRI. These studies define the brain alterations in regions associated with vision, cognition, and emotion regulation, such as gray matter volume changes, altered functional connectivity and activity, and microstructural modifications, revealing the neurological impact of TED beyond the orbit. Notably, there was convergence across these studies indicating predominant abnormalities within the occipital and parietal lobes. This review underscores the critical role of advanced neuroimaging techniques in unraveling the complex neuropathological mechanism of TED, laying a foundation for future research and potential therapeutic targets.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ning Lee
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rona Z Silkiss
- Division of Ophthalmic Plastic Surgery, California Pacific Medical Center, Silkiss Eye Surgery, San Francisco, CA, United States
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Lai PH, Hu RY, Huang X. Alterations in dynamic regional homogeneity within default mode network in patients with thyroid-associated ophthalmopathy. Neuroreport 2024; 35:702-711. [PMID: 38829952 DOI: 10.1097/wnr.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a significant autoimmune eye disease known for causing exophthalmos and substantial optic nerve damage. Prior investigations have solely focused on static functional MRI (fMRI) scans of the brain in TAO patients, neglecting the assessment of temporal variations in local brain activity. This study aimed to characterize alterations in dynamic regional homogeneity (dReHo) in TAO patients and differentiate between TAO patients and healthy controls using support vector machine (SVM) classification. Thirty-two patients with TAO and 32 healthy controls underwent resting-state fMRI scans. We calculated dReHo using sliding-window methods to evaluate changes in regional brain activity and compared these findings between the two groups. Subsequently, we employed SVM, a machine learning algorithm, to investigate the potential use of dReHo maps as diagnostic markers for TAO. Compared to healthy controls, individuals with active TAO demonstrated significantly higher dReHo values in the right angular gyrus, left precuneus, right inferior parietal as well as the left superior parietal gyrus. The SVM model demonstrated an accuracy ranging from 65.62 to 68.75% in distinguishing between TAO patients and healthy controls based on dReHo variability in these identified brain regions, with an area under the curve of 0.70 to 0.76. TAO patients showed increased dReHo in default mode network-related brain regions. The accuracy of classifying TAO patients and healthy controls based on dReHo was notably high. These results offer new insights for investigating the pathogenesis and clinical diagnostic classification of individuals with TAO.
Collapse
Affiliation(s)
- Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Wu Q, Zhou J, Fang W, Jiang WH, Pu XY, Chen HH, Xu XQ, Hu H, Wu FY. Structural and Functional Brain Changes After Glucocorticoid Therapy in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2024; 109:649-658. [PMID: 37864850 DOI: 10.1210/clinem/dgad626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE To investigate the brain structural and functional alterations in patients with thyroid-associated ophthalmopathy (TAO) before and after glucocorticoid therapy, using voxel-based morphometry (VBM) as well as resting-state functional magnetic resonance imaging (MRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). METHODS Between 2019 and 2022, 32 patients with TAO and 23 healthy controls underwent pre-therapy MRI in Nanjing, China. Intravenous glucocorticoid therapy was administered to all patients. At 3 months after end of therapy, 26 patients were available for rescanned MRI. VBM, ALFF, and ReHo were used to evaluate the brain structural and functional differences. RESULTS Before therapy, TAO patients showed significantly decreased gray matter volume (GMV) in the left orbital part of superior frontal gyrus (ORBsup) and medial superior frontal gyrus (SFGmed) than healthy controls. Patients had higher ALFF values in bilateral gyrus rectus and olfactory cortex and lower values in bilateral cuneus. Patients also showed decreased ReHo values in bilateral lingual gyrus. After therapy, increased GMV in the left anterior cingulate gyrus and SFGmed, increased ALFF values in bilateral cuneus and superior occipital gyrus, and increased ReHo values in bilateral SFGmed were found in TAO patients compared to the pre-therapy cohort. Compared to controls, decreased GMV in left ORBsup was observed in post-therapy TAO patients. CONCLUSION Our results indicated that TAO might cause functional and structural deficits in the visual and emotional regions of the brain, with recovery in the former and partial restoration in the latter after effective glucocorticoid therapy. These findings may lead to deeper understanding of the pathophysiological mechanism behind TAO.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, Taicang 215006, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
4
|
Duan Q, Wang Z, Cheung W, Liu J, Zhang H, Qiao W, Zhang Q. Functional decoding and meta-analytic connectivity modeling in thyroid-associated ophthalmopathy. Heliyon 2024; 10:e23749. [PMID: 38226223 PMCID: PMC10788440 DOI: 10.1016/j.heliyon.2023.e23749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is an orbital disease closely related to thyroid disease with a long-lasting duration that can be blinding and disabling. Recently, structural and functional neuroimaging studies have been performed in TAO patients, but studies have reported inconsistent results. This quantitative meta-analysis was conducted to identify convergent patterns of abnormal brain function among different studies in TAO. Methods We searched PubMed, EMBASE, Cochrane, and Web of Science, performed reference tracking, and retrieved 15 eligible studies. Peak coordinates were extracted from these studies and subsequently tested for convergence using activation likelihood estimation (ALE). Results Compared to healthy subjects, resting-state brain activity in the whole brain of TAO patients was significantly increased in the left superior frontal gyrus (SFG) and decreased in the left cuneus/precuneus. Functional decoding analysis of the BrainMap database revealed that these regions are predominantly associated with cognitive and emotional impairment. In this study, task-related meta-analytic connectivity modeling (MACM) analysis was used to describe the connectivity and function of the two seed regions. Significant coactivation of these regions was found primarily in the bilateral superior parietal lobule, medial frontal gyrus, left fusiform gyrus, left cingulate gyrus, supplementary motor area and thalamus. Conclusion Our findings underscore the role of the SFG and the cuneus/precuneus in the pathophysiology of TAO, highlighting the crucial impact of working memory deficits.
Collapse
Affiliation(s)
- Qidang Duan
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, China
| | - Zhihong Wang
- The first people's hospital of lanzhou city, Lanzhou, 730000, China
| | | | - Jing Liu
- Department of Endocrinology and Gerontology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Wenjun Qiao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Qi Zhang
- Department of Endocrinology and Gerontology, Gansu Provincial Hospital, Lanzhou, 730000, China
| |
Collapse
|
5
|
Hu H, Zhou J, Fang W, Chen HH, Jiang WH, Pu XY, Xu XQ, Gu WH, Wu FY. Increased brain iron in patients with thyroid-associated ophthalmopathy: a whole-brain analysis. Front Endocrinol (Lausanne) 2023; 14:1268279. [PMID: 38034014 PMCID: PMC10687634 DOI: 10.3389/fendo.2023.1268279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background To investigate the whole-brain iron deposition alternations in patients with thyroid-associated ophthalmopathy (TAO) using quantitative susceptibility mapping (QSM). Methods Forty-eight patients with TAO and 33 healthy controls (HCs) were enrolled. All participants underwent brain magnetic resonance imaging scans and clinical scale assessments. QSM values were calculated and compared between TAO and HCs groups using a voxel-based analysis. A support vector machine (SVM) analysis was performed to evaluate the performance of QSM values in differentiating patients with TAO from HCs. Results Compared with HCs, patients with TAO showed significantly increased QSM values in the bilateral caudate nucleus (CN), left thalamus (TH), left cuneus, left precuneus, right insula and right middle frontal gyrus. In TAO group, QSM values in left TH were positively correlated with Hamilton Depression Rating Scale (HDRS) scores (r = 0.414, p = 0.005). The QSM values in right CN were negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r = -0.342, p = 0.021). Besides that, a nearly negative correlation was found between QSM values in left CN and MoCA scores (r = -0.286, p = 0.057). The SVM model showed a good performance in distinguishing patients with TAO from the HCs (area under the curve, 0.958; average accuracy, 90.1%). Conclusion Patients with TAO had significantly increased iron deposition in brain regions corresponding to known visual, emotional and cognitive deficits. QSM values could serve as potential neuroimaging markers of TAO.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Gu
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wen Z, Kang Y, Zhang Y, Yang H, Zhao Y, Huang X, Xie B. Disrupted dynamic amplitude of low-frequency fluctuations in patients with active thyroid-associated ophthalmopathy. Front Cell Dev Biol 2023; 11:1174688. [PMID: 37250893 PMCID: PMC10213541 DOI: 10.3389/fcell.2023.1174688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose: Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease that affects the orbit and is the most prevalent extra-thyroidal complication of Graves' disease. Previous neuroimaging studies have focused on abnormal static regional activity and functional connectivity in patients with TAO. However, the characteristics of local brain activity over time are poorly understood. This study aimed to investigate alterations in the dynamic amplitude of low-frequency fluctuation (dALFF) in patients with active TAO and to distinguish patients with TAO from healthy controls (HCs) using a support vector machine (SVM) classifier. Methods: A total of 21 patients with TAO and 21 HCs underwent resting-state functional magnetic resonance imaging scans. dALFFs were calculated in conjunction with sliding window approaches to assess dynamic regional brain activity and to compare the groups. Then, we used SVM, a machine learning algorithm, to determine whether dALFF maps may be used as diagnostic indicators for TAO. Results: Compared with HCs, patients with active TAO showed decreased dALFF in the right calcarine, lingual gyrus, superior parietal lobule, and precuneus. The SVM model showed an accuracy of 45.24%-47.62% and area under the curve of 0.35-0.44 in distinguishing TAO from HCs. No correlation was found between clinical variables and regional dALFF. Conclusion: Patients with active TAO showed altered dALFF in the visual cortex and the ventral and dorsal visual pathways, providing further details on the pathogenesis of TAO.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Zhao
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|