1
|
Huang W, Shu N. AI-powered integration of multimodal imaging in precision medicine for neuropsychiatric disorders. Cell Rep Med 2025; 6:102132. [PMID: 40398391 DOI: 10.1016/j.xcrm.2025.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/20/2025] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Neuropsychiatric disorders have complex pathological mechanism, pronounced clinical heterogeneity, and a prolonged preclinical phase, which presents a challenge for early diagnosis and development of precise intervention strategies. With the development of large-scale multimodal neuroimaging datasets and advancement of artificial intelligence (AI) algorithms, the integration of multimodal imaging with AI techniques has emerged as a pivotal avenue for early detection and tailoring individualized treatment for neuropsychiatric disorders. To support these advances, in this review, we outline multimodal neuroimaging techniques, AI methods, and strategies for multimodal data fusion. We highlight applications of multimodal AI based on neuroimaging data in precision medicine for neuropsychiatric disorders, discussing challenges in clinical adoption, their emerging solutions, and future directions.
Collapse
Affiliation(s)
- Weijie Huang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, MOE Key Laboratory of Brain Computer Intelligence Technology, Nanjing 211106, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Hok P, Thai QT, Bučková BR, Domin M, Řasová K, Tintěra J, Lotze M, Grothe M, Hlinka J. Global functional connectivity reorganization reflects cognitive processing speed deficits and fatigue in multiple sclerosis. Eur J Neurol 2025; 32:e16421. [PMID: 39058296 PMCID: PMC11622266 DOI: 10.1111/ene.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment (CI) in multiple sclerosis (MS) is associated with bidirectional changes in resting-state centrality measures. However, practicable functional magnetic resonance imaging (fMRI) biomarkers of CI are still lacking. The aim of this study was to assess the graph-theory-based degree rank order disruption index (kD) and its association with cognitive processing speed as a marker of CI in patients with MS (PwMS) in a secondary cross-sectional fMRI analysis. METHODS Differentiation between PwMS and healthy controls (HCs) using kD and its correlation with CI (Symbol Digit Modalities Test) was compared to established imaging biomarkers (regional degree, volumetry, diffusion-weighted imaging, lesion mapping). Additional associations were assessed for fatigue (Fatigue Scale for Motor and Cognitive Functions), gait and global disability. RESULTS Analysis in 56 PwMS and 58 HCs (35/27 women, median age 45.1/40.5 years) showed lower kD in PwMS than in HCs (median -0.30/-0.06, interquartile range 0.55/0.54; p = 0.009, Mann-Whitney U test), yielding acceptable yet non-superior differentiation (area under curve 0.64). kD and degree in medial prefrontal cortex (MPFC) correlated with CI (kD/MPFC Spearman's ρ = 0.32/-0.45, p = 0.019/0.001, n = 55). kD also explained fatigue (ρ = -0.34, p = 0.010, n = 56) but neither gait nor disability. CONCLUSIONS kD is a potential biomarker of CI and fatigue warranting further validation.
Collapse
Affiliation(s)
- Pavel Hok
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
- Department of Neurology, Faculty of Medicine and DentistryPalacký University OlomoucOlomoucCzechia
| | - Quang Thong Thai
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Barbora Rehák Bučková
- Department of Complex SystemsInstitute of Computer Science of the Czech Academy of SciencesPragueCzechia
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Martin Domin
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Kamila Řasová
- Department of Rehabilitation, Third Faculty of MedicineCharles UniversityPragueCzechia
| | - Jaroslav Tintěra
- Radiodiagnostic and Interventional Radiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzechia
| | - Martin Lotze
- Functional Imaging UnitInstitute of Diagnostic Radiology and Neuroradiology, University Medicine GreifswaldGreifswaldGermany
| | - Matthias Grothe
- Department of NeurologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Jaroslav Hlinka
- Department of Complex SystemsInstitute of Computer Science of the Czech Academy of SciencesPragueCzechia
| |
Collapse
|
3
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
4
|
El Morr C, Kundi B, Mobeen F, Taleghani S, El-Lahib Y, Gorman R. AI and disability: A systematic scoping review. Health Informatics J 2024; 30:14604582241285743. [PMID: 39287175 DOI: 10.1177/14604582241285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Background: Artificial intelligence (AI) can enhance life experiences and present challenges for people with disabilities. Objectives: This study aims to investigate the relationship between AI and disability, exploring the potential benefits and challenges of using AI for people with disabilities. Methods: A systematic scoping review was conducted using eight online databases; 45 scholarly articles from the last 5 years were identified and selected for thematic analysis. Results: The review's findings revealed AI's potential to enhance healthcare; however, it showed a high prevalence of a narrow medical model of disability and an ableist perspective in AI research. This raises concerns about the perpetuation of biases and discrimination against individuals with disabilities in the development and deployment of AI technologies. Conclusion: We recommend shifting towards a social model of disability, promoting interdisciplinary collaboration, addressing AI bias and discrimination, prioritizing privacy and security in AI development, focusing on accessibility and usability, investing in education and training, and advocating for robust policy and regulatory frameworks. The review emphasizes the urgent need for further research to ensure that AI benefits all members of society equitably and that future AI systems are designed with inclusivity and accessibility as core principles.
Collapse
Affiliation(s)
- Christo El Morr
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Bushra Kundi
- Master of Science in eHealth, McMaster University, Hamilton, ON, Canada
| | - Fariah Mobeen
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Sarah Taleghani
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Yahya El-Lahib
- Faculty of Social Work, University of Calgary, Calgary, AB, Canada
| | - Rachel Gorman
- School of Health Policy and Management, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
McWhinney SR, Hlinka J, Bakstein E, Dietze LMF, Corkum ELV, Abé C, Alda M, Alexander N, Benedetti F, Berk M, Bøen E, Bonnekoh LM, Boye B, Brosch K, Canales‐Rodríguez EJ, Cannon DM, Dannlowski U, Demro C, Diaz‐Zuluaga A, Elvsåshagen T, Eyler LT, Fortea L, Fullerton JM, Goltermann J, Gotlib IH, Grotegerd D, Haarman B, Hahn T, Howells FM, Jamalabadi H, Jansen A, Kircher T, Klahn AL, Kuplicki R, Lahud E, Landén M, Leehr EJ, Lopez‐Jaramillo C, Mackey S, Malt U, Martyn F, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Melloni E, Mitchell PB, Nabulsi L, Nenadić I, Nitsch R, Opel N, Ophoff RA, Ortuño M, Overs BJ, Pineda‐Zapata J, Pomarol‐Clotet E, Radua J, Repple J, Roberts G, Rodriguez‐Cano E, Sacchet MD, Salvador R, Savitz J, Scheffler F, Schofield PR, Schürmeyer N, Shen C, Sim K, Sponheim SR, Stein DJ, Stein F, Straube B, Suo C, Temmingh H, Teutenberg L, Thomas‐Odenthal F, Thomopoulos SI, Urosevic S, Usemann P, van Haren NEM, Vargas C, Vieta E, Vilajosana E, Vreeker A, Winter NR, Yatham LN, Thompson PM, Andreassen OA, Ching CRK, Hajek T. Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity. Hum Brain Mapp 2024; 45:e26682. [PMID: 38825977 PMCID: PMC11144951 DOI: 10.1002/hbm.26682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 06/04/2024] Open
Abstract
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
Collapse
Affiliation(s)
- Sean R. McWhinney
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jaroslav Hlinka
- Department of Complex SystemsInstitute of Computer Science, Czech Academy of SciencesPragueCzech Republic
- National Institute of Mental HealthKlecanyCzech Republic
| | - Eduard Bakstein
- National Institute of Mental HealthKlecanyCzech Republic
- Department of CyberneticsCzech Technical UniversityPragueCzech Republic
| | - Lorielle M. F. Dietze
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | | | - Christoph Abé
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Martin Alda
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- National Institute of Mental HealthKlecanyCzech Republic
| | - Nina Alexander
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Francesco Benedetti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVictoriaAustralia
| | - Erlend Bøen
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Linda M. Bonnekoh
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department of Child Adolescent Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Birgitte Boye
- Unit for Psychosomatics and C‐L Psychiatry for AdultsOslo University HospitalOsloNorway
- Department of Behavioural MedicineInstitute of Basic Medical Sciences, University of OsloOsloNorway
| | - Katharina Brosch
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
- Institute of Behavioral ScienceFeinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAM, Instituto de Salud Carlos IIIBarcelonaSpain
| | - Dara M. Cannon
- Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Udo Dannlowski
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Caroline Demro
- Department of Psychiatry & Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ana Diaz‐Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of MedicineUniversidad de AntioquiaMedellinColombia
| | - Torbjørn Elvsåshagen
- Department of Behavioural MedicineInstitute of Basic Medical Sciences, University of OsloOsloNorway
- Institute of Clinical Medicine, Norwegian Centre for Mental Disorders Research (NORMENT)University of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of Neurology, Division of Clinical NeuroscienceOslo University HospitalOsloNorway
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Desert‐Pacific MIRECC, VA San Diego HealthcareSan DiegoCaliforniaUSA
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos IIIUniversity of BarcelonaBarcelonaSpain
| | - Janice M. Fullerton
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Biomedical Sciences, Faculty of Medicine & HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janik Goltermann
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ian H. Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Bartholomeus Haarman
- Department of PsychiatryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Tim Hahn
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Fleur M. Howells
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Hamidreza Jamalabadi
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Andreas Jansen
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
- Core‐Facility Brainimaging, Faculty of MedicineUniversity of MarburgGermany
| | - Tilo Kircher
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Anna Luisa Klahn
- Institute of Neuroscience and PhysiologySahlgrenska Academy at Gothenburg UniversityGothenburgSweden
| | | | - Elijah Lahud
- Department of Psychiatry & Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mikael Landén
- Institute of Neuroscience and PhysiologySahlgrenska Academy at Gothenburg UniversityGothenburgSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Elisabeth J. Leehr
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Carlos Lopez‐Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of MedicineUniversidad de AntioquiaMedellinColombia
| | - Scott Mackey
- Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonVermontUSA
| | - Ulrik Malt
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Institute of Clinical Medicine, Department of NeurologyUniversity of OsloOsloNorway
| | - Fiona Martyn
- Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Elena Mazza
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Genevieve McPhilemy
- Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Sandra Meier
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| | - Susanne Meinert
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Translational NeuroscienceUniversity of MünsterMünsterGermany
| | - Elisa Melloni
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine & HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Leila Nabulsi
- Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Igor Nenadić
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Robert Nitsch
- Institute for Translational NeuroscienceUniversity of MünsterMünsterGermany
| | - Nils Opel
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
- German Center for Mental Health (DZPG), Site Jena‐Magdeburg‐HalleGermany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
| | - Maria Ortuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Julian Pineda‐Zapata
- Research GroupInstituto de Alta Tecnología Médica, Ayudas diagnósticas SURAMedellinColombia
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAM, Instituto de Salud Carlos IIIBarcelonaSpain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos IIIUniversity of BarcelonaBarcelonaSpain
| | - Jonathan Repple
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University Frankfurt, University HospitalFrankfurtGermany
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine & HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Elena Rodriguez‐Cano
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAM, Instituto de Salud Carlos IIIBarcelonaSpain
| | - Matthew D. Sacchet
- Meditation Research Program, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAM, Instituto de Salud Carlos IIIBarcelonaSpain
| | - Jonathan Savitz
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Oxley College of Health SciencesThe University of TulsaTulsaOklahomaUSA
| | - Freda Scheffler
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Peter R. Schofield
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Biomedical Sciences, Faculty of Medicine & HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Navid Schürmeyer
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Chen Shen
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Scott R. Sponheim
- Department of Psychiatry & Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Minneapolis VA Health Care SystemMinneapolisMinnesotaUSA
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- South African MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Frederike Stein
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Benjamin Straube
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
| | - Henk Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Lea Teutenberg
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | | | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Snezana Urosevic
- Department of Psychiatry & Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Minneapolis VA Health Care SystemMinneapolisMinnesotaUSA
| | - Paula Usemann
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of PsychiatryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of MedicineUniversidad de AntioquiaMedellinColombia
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Institute of NeuroscienceUniversity of Barcelona, Hospital ClínicBarcelonaSpain
| | - Enric Vilajosana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Annabel Vreeker
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
| | - Nils R. Winter
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | | | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ole A. Andreassen
- Institute of Clinical Medicine, Norwegian Centre for Mental Disorders Research (NORMENT)University of Oslo and Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Tomas Hajek
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- National Institute of Mental HealthKlecanyCzech Republic
| |
Collapse
|
6
|
Ren Z, Wang B, Yue M, Han J, Chen Y, Zhao T, Wang N, Xu J, Zhao P, Li M, Sun L, Wen B, Zhao Z, Han X. Construction of machine learning models for recognizing comorbid anxiety in epilepsy patients based on their clinical and quantitative EEG features. Epilepsy Res 2024; 201:107333. [PMID: 38422800 DOI: 10.1016/j.eplepsyres.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND This study aimed to construct prediction models for the recognizing of anxiety disorders (AD) in patients with epilepsy (PWEs) by combining clinical features with quantitative electroencephalogram (qEEG) features and using machine learning (ML). METHODS Nineteen clinical features and 20-min resting-state EEG were collected from 71 PWEs comorbid with AD and another 60 PWEs without AD who met the inclusion-exclusion criteria of this study. The EEG were preprocessed and 684 Phase Locking Value (PLV) and 76 Lempel-Ziv Complexity (LZC) features on four bands were extracted. The Fisher score method was used to rank all the derived features. We constructed four models for recognizing AD in PWEs, whether PWEs based on different combinations of features using eXtreme gradient boosting (XGboost) and evaluated these models using the five-fold cross-validation method. RESULTS The prediction model constructed by combining the clinical, PLV, and LZC features showed the best performance, with an accuracy of 96.18%, precision of 94.29%, sensitivity of 98.33%, F1-score of 96.06%, and Area Under the Curve (AUC) of 0.96. The Fisher score ranking results displayed that the top ten features were depression, educational attainment, α_P3LZC, α_T6-PzPLV, α_F7LZC, β_Fp2-O1PLV, θ_T4-CzPLV, θ_F7-PzPLV, α_Fp2LZC, and θ_T4-PzPLV. CONCLUSIONS The model, constructed by combining the clinical and qEEG features PLV and LZC, efficiently identified the presence of AD comorbidity in PWEs and might have the potential to complement the clinical diagnosis. Our findings suggest that LZC features in the α band and PLV features in Fp2-O1 may be potential biomarkers for diagnosing AD in PWEs.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Bin Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Mengyan Yue
- Orthopedic Rehabilitation Department, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450003, China
| | - Jiuyan Han
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Yanan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Ting Zhao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Na Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Jun Xu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Mingmin Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China
| | - Bin Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710001, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan Province 453000, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province 450003, China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan Province 450003, China.
| |
Collapse
|
7
|
Naji Y, Mahdaoui M, Klevor R, Kissani N. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus 2023; 15:e45412. [PMID: 37854769 PMCID: PMC10581506 DOI: 10.7759/cureus.45412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Multiple sclerosis (MS) remains a challenging neurological disorder for the clinician in terms of diagnosis and management. The growing integration of AI-based algorithms in healthcare offers a golden opportunity for clinicians and patients with MS. AI models are based on statistical analyses of large quantities of data from patients including "demographics, genetics, clinical and radiological presentation." These approaches are promising in the quest for greater diagnostic accuracy, tailored management plans, and better prognostication of disease. The use of AI in multiple sclerosis represents a paradigm shift in disease management. With ongoing advancements in AI technologies and the increasing availability of large-scale datasets, the potential for further innovation is immense. As AI continues to evolve, its integration into clinical practice will play a vital role in improving diagnostics, optimizing treatment strategies, and enhancing patient outcomes for MS. This review is about conducting a literature review to identify relevant studies on AI applications in MS. Only peer-reviewed studies published in the last four years have been selected. Data related to AI techniques, advancements, and implications are extracted. Through data analysis, key themes and tendencies are identified. The review presents a cohesive synthesis of the current state of AI and MS, highlighting potential implications and new advancements.
Collapse
Affiliation(s)
- Yahya Naji
- Neurology Department, REGNE Research Laboratory, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, MAR
- Neurology Department, Agadir University Hospital, Agadir, MAR
| | - Mohamed Mahdaoui
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Raymond Klevor
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Najib Kissani
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| |
Collapse
|