1
|
Jiang H, Zhang M, Qu Y, Xing B, Wang B, Liu Y, Zhang P. Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds. J Funct Biomater 2025; 16:136. [PMID: 40278244 PMCID: PMC12027867 DOI: 10.3390/jfb16040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bohan Xing
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bojiang Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yanqun Liu
- Department of Orthopedic Surgery, Yanbian University Hospital, 1327 Juzi St., Yanji 133002, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| |
Collapse
|
2
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
4
|
Chu J, Lu M, Pfeifer CG, Alt V, Docheva D. Rebuilding Tendons: A Concise Review on the Potential of Dermal Fibroblasts. Cells 2020; 9:E2047. [PMID: 32911760 PMCID: PMC7563185 DOI: 10.3390/cells9092047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Tendons are vital to joint movement by connecting muscles to bones. Along with an increasing incidence of tendon injuries, tendon disorders can burden the quality of life of patients or the career of athletes. Current treatments involve surgical reconstruction and conservative therapy. Especially in the elderly population, tendon recovery requires lengthy periods and it may result in unsatisfactory outcome. Cell-mediated tendon engineering is a rapidly progressing experimental and pre-clinical field, which holds great potential for an alternative approach to established medical treatments. The selection of an appropriate cell source is critical and remains under investigation. Dermal fibroblasts exhibit multiple similarities to tendon cells, suggesting they may be a promising cell source for tendon engineering. Hence, the purpose of this review article was in brief, to compare tendon to dermis tissues, and summarize in vitro studies on tenogenic differentiation of dermal fibroblasts. Furthermore, analysis of an open source Gene Expression Omnibus (GEO) data repository was carried out, revealing great overlap in the molecular profiles of both cell types. Lastly, a summary of in vivo studies employing dermal fibroblasts in tendon repair as well as pilot clinical studies in this area is included. Altogether, dermal fibroblasts hold therapeutic potential and are attractive cells for rebuilding injured tendons.
Collapse
Affiliation(s)
- Jin Chu
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| | - Ming Lu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Christian G. Pfeifer
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Volker Alt
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Denitsa Docheva
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| |
Collapse
|
5
|
General Remarks. Plast Reconstr Surg 2018. [DOI: 10.1007/978-981-10-3400-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Tissue Engineering and Oncological Surgery. Plast Reconstr Surg 2018. [DOI: 10.1007/978-981-10-3400-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Tissue Engineering in Ophthalmology: Implications for Eyelid Reconstruction. Ophthalmic Plast Reconstr Surg 2017; 33:157-162. [PMID: 27749619 DOI: 10.1097/iop.0000000000000792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Bioengineering aims to produce functional tissue replacements to repair defects and has been widely investigated over the past few decades. We aimed to review the available literature on the application of tissue engineering in ophthalmology, with a particular focus on ophthalmic plastic surgery and potential applications for eyelid reconstruction. METHODS A literature search was performed on the MEDLINE database using the keywords "bioengineering," "tissue engineering," and "ophthalmology." Articles written in English were included. RESULTS There is a substantial body of work on tissue engineering of the cornea. Other structures in ophthalmology investigated include the conjunctiva, lacrimal gland, and orbital bone. We also discuss the potential application of tissue engineering in eyelid reconstruction. CONCLUSION Tissue engineering represents the future of regenerative and reconstructive medicine, with significant potential applications in ophthalmic plastic surgery.
Collapse
|
8
|
Zeineddine HA, Frush TJ, Saleh ZM, El-Othmani MM, Saleh KJ. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update. Orthop Clin North Am 2017; 48:275-288. [PMID: 28577777 DOI: 10.1016/j.ocl.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hussein A Zeineddine
- Department of Surgery, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Todd J Frush
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Zeina M Saleh
- Department of Surgery, American University of Beirut Medical Center, Bliss Street, Riad El-Solh, Beirut 11072020, Lebanon
| | - Mouhanad M El-Othmani
- Department of Orthopaedics and Sports Medicine, Musculoskeletal Institute of Excellence, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Khaled J Saleh
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Hwa Lee
- Department of Ophthalmology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
10
|
The Biomechanics of eyelid tarsus tissue. J Biomech 2015; 48:3455-9. [DOI: 10.1016/j.jbiomech.2015.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/26/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022]
|
11
|
O’Brien MP, Penmatsa M, Palukuru U, West P, Yang X, Bostrom MPG, Freeman T, Pleshko N. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy. Cartilage 2015; 6:174-84. [PMID: 26175863 PMCID: PMC4481387 DOI: 10.1177/1947603515572874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology. DESIGN Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and IFOP data obtained from defect and adjacent regions at 2, 4, 6, 8, 12, and 16 weeks postsurgery. Tissues were assessed histologically using the modified O'Driscoll score, by FT-IRIS, and by partial least squares (PLS) modeling of IFOP spectra. RESULTS The FT-IRIS parameters of collagen content, proteoglycan content, and collagen index correlated significantly with modified O'Driscoll score (P = 0.05, 0.002, and 0.02, respectively), indicative of their sensitivity to tissue healing. Repair tissue IFOP spectra were distinguished from normal tissue IFOP spectra in all samples by PLS analysis. However, the PLS model for prediction of histological score had a high prediction error, which was attributed to the spectral information being acquired from the tissue surface only. CONCLUSION The strong correlations between FT-IRIS data and histological score support further development of the IFOP technique for clinical applications, although further studies to optimize data collection from the full sample depths are required.
Collapse
Affiliation(s)
- Megan P. O’Brien
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Madhuri Penmatsa
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Uday Palukuru
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Paul West
- Department of Mathematics, Engineering & Computer Science, LaGuardia Community College, Long Island City, NY, USA
| | - Xu Yang
- Hospital of Special Surgery; New York, NY, USA
| | | | - Theresa Freeman
- Department of Orthopaedics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Wang Z, Weng Y, Lu S, Zong C, Qiu J, Liu Y, Liu B. Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site. J Biomed Mater Res B Appl Biomater 2014; 103:1204-16. [PMID: 25327691 DOI: 10.1002/jbm.b.33288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/07/2014] [Accepted: 08/19/2014] [Indexed: 01/29/2023]
Abstract
AIMS To analyze the effects of platelet-rich fibrin (PRF) on mesenchymal stem cells (MSCs) in vitro and investigate in vivo bone formation by MSC sheets with PRF. MATERIALS AND METHODS Cell proliferation and expression of osteogenesis-related genes within MSC sheets were assessed upon exposure to PRF from the same donors. We then injected MSC sheet fragments with or without PRF subcutaneously in nude mice and assessed bone formation by micro-computed tomography and histological analyses. RESULTS PRF significantly stimulated MSC proliferation and osteogenesis in vitro. MSC sheets injected with or without PRF formed new bone, but those with PRF produced significantly more and denser bone. CONCLUSIONS MSC sheets can be used to generate tissue engineered bone upon injection, and PRF increases the osteogenic capacity of MSC sheets in vitro and in vivo.
Collapse
Affiliation(s)
- Zhifa Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanming Weng
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengjun Lu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chunlin Zong
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianyong Qiu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
13
|
|
14
|
Tang D, Xu G, Yang Z, Holz J, Ye X, Cai S, Yuan W, Wang Y. Biphasic calcium phosphate nano-composite scaffolds reinforced with bioglass provide a synthetic alternative to autografts in a canine tibiofibula defect model. Chin Med J (Engl) 2014; 127:1334-1338. [PMID: 24709190 DOI: 10.3760/cma.j.issn.0366-6999.20122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Bone grafting is commonly used to repair bone defects. As the porosity of the graft scaffold increases, bone formation increases, but the strength decreases. Early attempts to engineer materials were not able to resolve this problem. In recent years, nanomaterials have demonstrated the unique ability to improve the material strength and toughness while stimulating new bone formation. In our previous studies, we synthesized a nano-scale material by reinforcing a porous β-tricalcium phosphate (β-TCP) ceramic scaffold with Na2O-MgO-P2O5-CaO bioglass (β-TCP/BG). However, the in vivo effects of the β-TCP/BG scaffold on bone repair remain unknown. METHODS We investigated the efficacy of β-TCP/BG scaffolds compared to autografts in a canine tibiofibula defect model. The tibiofibula defects were created in the right legs of 12 dogs, which were randomly assigned to either the scaffold group or the autograft group (six dogs per group). Radiographic evaluation was performed at 0, 4, 8, and 12 weeks post-surgery. The involved tibias were extracted at 12 weeks and were tested to failure via a three-point bending. After the biomechanical analysis, specimens were subsequently processed for scanning electron microscopy analysis and histological evaluations. RESULTS Radiographic evaluation at 12 weeks post-operation revealed many newly formed osseous calluses and bony unions in both groups. Both the maximum force and break force in the scaffold group (n = 6) were comparable to those in the autograft group (n = 6, P > 0.05), suggesting that the tissue-engineered bone repair achieved similar biomechanical properties to autograft bone repair. At 12 weeks post-operation, obvious new bone and blood vessel formations were observed in the artificial bone of the experimental group. CONCLUSIONS The results demonstrated that new bone formation and high bone strength were achieved in the β-TCP/BG scaffold group, and suggested that the β-TCP/BG scaffold could be used as a synthetic alternative to autografts for the repair of bone defects.
Collapse
Affiliation(s)
- Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guohua Xu
- Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Zhou Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jonathan Holz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA
| | - Xiaojian Ye
- Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wen Yuan
- Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y, Zhou G. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 2014; 35:152-64. [DOI: 10.1016/j.biomaterials.2013.09.082] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/24/2013] [Indexed: 01/23/2023]
|
16
|
The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. PLoS One 2013; 8:e72973. [PMID: 23977373 PMCID: PMC3745539 DOI: 10.1371/journal.pone.0072973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.
Collapse
|
17
|
Geng W, Ma D, Yan X, Liu L, Cui J, Xie X, Li H, Chen F. Engineering tubular bone using mesenchymal stem cell sheets and coral particles. Biochem Biophys Res Commun 2013; 433:595-601. [PMID: 23523796 DOI: 10.1016/j.bbrc.2013.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.
Collapse
Affiliation(s)
- Wenxin Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi'an 710069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. However, apart from hematopoietic stem cell (HSC) transplantation, essentially all other stem cell treatments remain experimental. High hopes have inspired numerous clinical trials, but it has been difficult to obtain unequivocal evidence for robust clinical benefit. In recent years, unproven therapies have been widely practiced outside the standard clinical trial network, threatening the cause of legitimate clinical investigation. Numerous challenges and technical barriers must be overcome before novel stem cell therapies can achieve meaningful clinical impact.
Collapse
|
19
|
Evans RB. Managing the injured tendon: current concepts. J Hand Ther 2012; 25:173-89; quiz 190. [PMID: 22326362 DOI: 10.1016/j.jht.2011.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/31/2011] [Indexed: 02/03/2023]
Abstract
Despite advances in understanding of the mechanical aspects of tendon management with improved suture technique and early stress application with postoperative therapy, clinical results remain inconsistent after repair, especially within the synovial regions. Complementary research to enhance the intrinsic pathway of healing, suppress the extrinsic pathway of healing, and manipulate frictional resistance to tendon gliding is now the focus of current basic science research on tendons. In the future, application of these new biologic therapies may increase the "safety zone" (or tolerance for load and excursion without dysfunctional gapping) as therapists apply stress to healing tendons and may alter future rehabilitation protocols by allowing greater angles of motion (and thus tendon excursion), increased external load, and decreased time in protective orthoses (splints). However, at this time, the stronger repair techniques and the application of controlled stress remain the best and most well-supported intervention after tendon injury and repair in the recovery of functional tendon excursion and joint range of motion. The hand therapist's role in this process remains a critical component contributing to satisfactory outcomes.
Collapse
Affiliation(s)
- Roslyn B Evans
- Indian River Hand and Upper Extremity Rehabilitation, Vero Beach, Florida 32960, USA.
| |
Collapse
|
20
|
|
21
|
Zhu J, He P, Lin L, Jones DR, Marchant RE. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules 2012; 13:706-13. [PMID: 22296572 PMCID: PMC3310151 DOI: 10.1021/bm201596w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extracellular matrix (ECM) is an attractive model for designing synthetic scaffolds with a desirable environment for tissue engineering. Here, we report on the synthesis of ECM-mimetic poly(ethylene glycol) (PEG) hydrogels for inducing endothelial cell (EC) adhesion and capillary-like network formation. A collagen type I-derived peptide GPQGIAGQ (GIA)-containing PEGDA (GIA-PEGDA) was synthesized with the collagenase-sensitive GIA sequence attached in the middle of the PEGDA chain, which was then copolymerized with RGD capped-PEG monoacrylate (RGD-PEGMA) to form biomimetic hydrogels. The hydrogels degraded in vitro with the rate dependent on the concentration of collagenase and also supported the adhesion of human umbilical vein ECs (HUVECs). Biomimetic RGD/GIA-PEGDA hydrogels with incorporation of 1% RGD-PEGDA into GIA-PEGDA hydrogels induced capillary-like organization when HUVECs were seeded on the hydrogel surface, while RGD/PEGDA and GIA-PEGDA hydrogels did not. These results indicate that both cell adhesion and biodegradability of scaffolds play important roles in the formation of capillary-like networks.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Ping He
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Lin Lin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Derek R. Jones
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| |
Collapse
|
22
|
What is the purpose of launching the World Journal of Otorhinolaryngology? World J Otorhinolaryngol 2011; 1:1-3. [DOI: 10.5319/wjo.v1.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We are pleased to announce the launching of the World Journal of Otorhinolaryngology (WJO) as a new member of the World Series journal family. The WJO is a peer-reviewed open-access journal dedicated to publishing original research articles, review articles, clinical studies, and case reports in all areas of otorhinolaryngology. Please consider submitting your research findings in otorhinolaryngology to the WJO.
Collapse
|