1
|
Guan Y, Wen J, Niu H, Zhai J, Dang Y, Guan J. Targeted delivery of engineered adipose-derived stem cell secretome to promote cardiac repair after myocardial infarction. J Control Release 2025; 383:113765. [PMID: 40274072 DOI: 10.1016/j.jconrel.2025.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Stem cell secretome offers a promising alternative to stem cell transplantation for treating myocardial infarction (MI). However, its clinical application faces two major challenges: how to enhance the levels of growth factors within the secretome to promote cardiac cell survival and vascularization, and how to efficiently deliver the secretome to the infarcted heart during the acute MI phase without risking rupture of the weakened myocardium. To address these challenges, we upregulated angiogenic growth factors in the secretome from adipose-derived stem cells (ADSC-secretome) by conditioning the cells under hypoxia and with insulin-like growth factor 1 (IGF-1). Our results show that exposure to 1 % O₂ condition significantly increased the expression of VEGF, bFGF, and PDGF-BB compared to 5 % O₂ condition. Co-treatment with IGF-1 further elevated the levels of these growth factors and, notably, reduced the secretion of pro-inflammatory cytokines such as TNFα, IL-1β, and IL-6 from the ADSCs. To rapidly and specifically deliver the secretome to the infarcted heart during acute MI, we encapsulated it within ischemia-targeting nanoparticles. These nanoparticles, designed for intravenous injection, preferentially accumulated in the infarcted region. The treatment significantly improved cardiac cell survival, tissue vascularization, and cardiac function. These findings suggest that ADSC secretome, enriched with angiogenic growth factors, holds strong potential for facilitating cardiac repair following MI.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jiaxing Wen
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jin Zhai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
4
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
5
|
Wu D, Chen X, Yao S, He Y, Chen G, Hu X, Chen Y, Lv Z, Yu J, Jin K, Cai Y, Mou X. Platelet Membrane Coated Cu 9S 8-SNAP for Targeting NIR-II Mild Photothermal Enhanced Chemodynamic/Gas Therapy of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400919. [PMID: 38639010 DOI: 10.1002/smll.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.
Collapse
Affiliation(s)
- Danping Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Shijie Yao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Gongning Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaojuan Hu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
6
|
Liu Y, Yu S, Chen Y, Hu Z, Fan L, Liang G. The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment. Front Pharmacol 2024; 15:1376955. [PMID: 38689664 PMCID: PMC11059051 DOI: 10.3389/fphar.2024.1376955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Hematologic malignancies (HMs), also referred to as hematological or blood cancers, pose significant threats to patients as they impact the blood, bone marrow, and lymphatic system. Despite significant clinical strategies using chemotherapy, radiotherapy, stem cell transplantation, targeted molecular therapy, or immunotherapy, the five-year overall survival of patients with HMs is still low. Fortunately, recent studies demonstrate that the nanodrug delivery system holds the potential to address these challenges and foster effective anti-HMs with precise treatment. In particular, cell membrane camouflaged nanodrug offers enhanced drug targeting, reduced toxicity and side effects, and/or improved immune response to HMs. This review firstly introduces the merits and demerits of clinical strategies in HMs treatment, and then summarizes the types, advantages, and disadvantages of current nanocarriers helping drug delivery in HMs treatment. Furthermore, the types, functions, and mechanisms of cell membrane fragments that help nanodrugs specifically targeted to and accumulate in HM lesions are introduced in detail. Finally, suggestions are given about their clinical translation and future designs on the surface of nanodrugs with multiple functions to improve therapeutic efficiency for cancers.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shanwu Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yixiang Chen
- Luoyang Vocational and Technical College, Luoyang, Henan, China
| | - Zhihong Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
7
|
Yang J, Shi X, Kuang Y, Wei R, Feng L, Chen J, Wu X. Cell-nanocarrier drug delivery system: a promising strategy for cancer therapy. Drug Deliv Transl Res 2024; 14:581-596. [PMID: 37721694 DOI: 10.1007/s13346-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Tumor targeting has been a great challenge for drug delivery systems. A number of nanotechnology-derived drug carriers have been developed for cancer treatment to improve efficacy and biocompatibility. Among them, the emergence of cell-nanocarriers has attracted great attention, which simulates cell function and has good biocompatibility. They can also escape the clearance of reticuloendothelial system, showing a long-cycle effect. The inherent tumor migration and tumor homing ability of cells increase their significance as tumor-targeting vectors. In this review, we focus on the combination of stem cells, immune cells, red blood cells, and cell membranes to nanocarriers, which enable chemotherapy agents to efficiently target lesion sites and improve drug distribution while being low toxic and safe. In addition, we discuss the pros and cons of these nanoparticles as well as the challenges and opportunities that lie ahead. Although research to address these limitations is still ongoing, this promising tumor-targeted drug delivery system will provide a safe and effective platform against cancer.
Collapse
Affiliation(s)
- Jiefen Yang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xiongxi Shi
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Yanting Kuang
- Shanghai Wei Er Lab, Shanghai, China
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia, People's Republic of China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Lanni Feng
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China
- Shanghai Wei Er Lab, Shanghai, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian, People's Republic of China.
- Shanghai Wei Er Lab, Shanghai, China.
| |
Collapse
|
8
|
Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B, Li J. Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol 2024; 12:1310442. [PMID: 38404689 PMCID: PMC10884319 DOI: 10.3389/fcell.2024.1310442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key immunosuppressive cells in the tumor microenvironment (TME) that play critical roles in promoting tumor growth and metastasis. Tumor-associated platelets (TAPs) help cancer cells evade the immune system and promote metastasis. In this paper, we describe the interaction between MDSCs and TAPs, including their generation, secretion, activation, and recruitment, as well as the effects of MDSCs and platelets on the generation and changes in the immune, metabolic, and angiogenic breast cancer (BC) microenvironments. In addition, we summarize preclinical and clinical studies, traditional Chinese medicine (TCM) therapeutic approaches, and new technologies related to targeting and preventing MDSCs from interacting with TAPs to modulate the BC TME, discuss the potential mechanisms, and provide perspectives for future development. The therapeutic strategies discussed in this review may have implications in promoting the normalization of the BC TME, reducing primary tumor growth and distant lung metastasis, and improving the efficiency of anti-tumor therapy, thereby improving the overall survival (OS) and progression-free survival (PFS) of patients. However, despite the significant advances in understanding these mechanisms and therapeutic strategies, the complexity and heterogeneity of MDSCs and side effects of antiplatelet agents remain challenging. This requires further investigation in future prospective cohort studies.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Hematology-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Xiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
10
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
11
|
Adhalrao SB, Jadhav KR, Patil PL, Kadam VJ, Nirmal MK. Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery. Curr Pharm Biotechnol 2024; 25:1230-1244. [PMID: 37539932 DOI: 10.2174/1389201024666230804140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023]
Abstract
Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.
Collapse
Affiliation(s)
- Shradha B Adhalrao
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Kisan R Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Prashant L Patil
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - Vilasrao J Kadam
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| | - M Kasekar Nirmal
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Sector 8 CBD Belapur, Navi Mumbai - 400614, Maharashtra, India
| |
Collapse
|
12
|
Zou J, Sun R, He M, Chen Y, Cheng Y, Xia C, Ma Y, Zheng S, Fu X, Yuan Z, Lan M, Lou K, Chen X, Gao F. Sequential Rocket-Mode Bioactivating Ticagrelor Prodrug Nanoplatform Combining Light-Switchable Diphtherin Transgene System for Breast Cancer Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53198-53216. [PMID: 37942626 DOI: 10.1021/acsami.3c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-β, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Ma
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shulei Zheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
14
|
Dai J, Wu M, Xu Y, Yao H, Lou X, Hong Y, Zhou J, Xia F, Wang S. Platelet membrane camouflaged AIEgen-mediated photodynamic therapy improves the effectiveness of anti-PD-L1 immunotherapy in large-burden tumors. Bioeng Transl Med 2023; 8:e10417. [PMID: 36925700 PMCID: PMC10013814 DOI: 10.1002/btm2.10417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Although immunotherapy has achieved recent clinical success in antitumor therapy, it is less effective for solid tumors with large burdens. To overcome this challenge, herein, we report a new strategy based on platelet membrane-camouflaged aggregation-induced emission (AIE) luminogen (Plt-M@P) combined with the anti-programmed death ligand 1 (anti-PD-L1) for tumoral photodynamic-immunotherapy. Plt-M@P is prepared by using poly lactic-co-glycolic acid (PLGA)/PF3-PPh3 complex as a nanocore, and then by co-extrusion with platelet membranes. PF3-PPh3 is an AIE-active conjugated polyelectrolyte with photosensitizing capability for photodynamic therapy (PDT). Plt-M@P exhibits superior tumor targeting capacity in vivo. When applied in small tumor-bearing (~40 mm3) mice, Plt-M@P-mediated PDT significantly inhibits tumor growth. In tumor models with large burdens (~200 mm3), using Plt-M@P-mediated PDT or anti-PD-L1 alone is less effective, but the combination of both is effective in inhibiting tumor growth. Importantly, this combination therapy has good biocompatibility, as demonstrated by the absence of damage to the major organs, especially the reproductive system. In conclusion, we show that Plt-M@P-mediated PDT can improve anti-PD-L1 immunotherapy by enhancing antitumor effects, providing a promising strategy for the treatment of tumors with large burdens.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yating Xu
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Hongming Yao
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jian Zhou
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomater 2023; 161:80-99. [PMID: 36804538 DOI: 10.1016/j.actbio.2023.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
The regenerative capabilities including self-renewal, migration and differentiation potentials shift from the embryonic phase to the mature period of endogenous tendon stem/progenitor cells (TSPCs) characterize restricted functions and disabilities following tendon injuries. Recent studies have shown that tendon regeneration and repair rely on multiple specific transcription factors to maintain TSPCs characteristics and functions. Here, we demonstrate Yap, a Hippo pathway downstream effector, is associated with TSPCs phenotype and regenerative potentials through gene expression analysis of tendon development and repair process. Exosomes have been proven an efficient transport platform for drug delivery. In this study, purified exosomes derived from donor platelets are loaded with recombinant Yap1 protein (PLT-Exo-Yap1) via electroporation to promote the stemness and differentiation potentials of TSPCs in vitro. Programmed TSPCs with Yap1 import maintain stemness and functions after long-term passage in vitro. The increased oxidative stress levels of TSPCs are related to the phenotype changes in duplicative senescent processes. The results show that treatment with PLT-Exo-Yap1 significantly protects TSPCs against oxidative stressor-induced stemness loss and senescence-associated secretory phenotype (SASP) through the NF-κB signaling pathway. In addition, we fabricate an Exos-Yap1-functioned GelMA hydrogel with a parallel-aligned substrate structure to enhance TSPCs adhesion, promote cell stemness and force regenerative cells toward the tendon lineage for in vitro and in vivo tendon regeneration. The application of Exos-Yap1 functioned implant assists new tendon-like tissue formation with good mechanical properties and locomotor functions in a full-cut Achilles tendon defect model. Thus, PLT-Exo-Yap1-functionalized GelMA promotes the rejuvenation of TSPCs to facilitate functional tendon regeneration. STATEMENT OF SIGNIFICANCE: This is the first study to explore that the hippo pathway downstream effector Yap is involved in tendon aging and repair processes, and is associated with the regenerative capabilities of TSPCs. In this syudy, Platelet-derived exosomes (PLT-Exos) act as an appropriate carrier platform for the delivery of recombinant Yap1 into TSPCs to regulate Yap activity. Effective Yap1 delivery inhibit oxidative stress-induced senescence associated phenotype of TSPCs by blocking ROS-mediated NF-κb signaling pathway activation. This study emphasizes that combined application of biomimetic scaffolds and Yap1 loaded PLT-Exos can provide structural support and promote rejuvenation of resident cells to assist functional regeneration for Achilles tendon defect, and has the prospect of clinical setting.
Collapse
|
16
|
Xiao M, Shi Y, Jiang S, Cao M, Chen W, Xu Y, Xu Z, Wang K. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Front Oncol 2022; 12:1039378. [PMID: 36523993 PMCID: PMC9745116 DOI: 10.3389/fonc.2022.1039378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2025] Open
Abstract
Anti-angiogenesis therapy and immunotherapy are the first-line therapeutic strategies for various tumor treatments in the clinic, bringing significant advantages for tumor patients. Recent studies have shown that anti-angiogenic therapy can potentiate immunotherapy, with many clinical trials conducted based on the combination of anti-angiogenic agents and immune checkpoint inhibitors (ICIs). However, currently available clinical dosing strategies and tools are limited, emphasizing the need for more improvements. Although significant progress has been achieved, several big questions remained, such as how to achieve cell-specific targeting in the tumor microenvironment? How to improve drug delivery efficiency in tumors? Can nanotechnology be used to potentiate existing clinical drugs and achieve synergistic sensitization effects? Over the recent few years, nanomedicines have shown unique advantages in antitumor research, including cell-specific targeting, improved delivery potentiation, and photothermal effects. Given that the applications of nanomaterials in tumor immunotherapy have been widely reported, this review provides a comprehensive overview of research advances on nanomaterials in anti-angiogenesis therapy, mainly focusing on the immunosuppressive effects of abnormal tumor vessels in the tumor immune microenvironment, the targets and strategies of anti-angiogenesis nanomedicines, and the potential synergistic effects and molecular mechanisms of anti-angiogenic nanomedicines in combination with immunotherapy, ultimately providing new perspectives on the nanomedicine-based synergy between anti-angiogenic and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
17
|
Li X, Hu L, Tan C, Wang X, Ran Q, Chen L, Li Z. Platelet-promoting drug delivery efficiency for inhibition of tumor growth, metastasis, and recurrence. Front Oncol 2022; 12:983874. [PMID: 36276066 PMCID: PMC9582853 DOI: 10.3389/fonc.2022.983874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines are considered one of the promising strategies for anticancer therapy; however, the low targeting efficiency of nanomedicines in vivo is a great obstacle to their clinical applications. Camouflaging nanomedicines with either platelet membrane (PM) or platelet would significantly prolong the retention time of nanomedicines in the bloodstream, enhance the targeting ability of nanomedicines to tumor cells, and reduce the off-target effect of nanomedicines in major organs during the anticancer treatment. In the current review, the advantages of using PM or platelet as smart carriers for delivering nanomedicines to inhibit tumor growth, metastasis, and recurrence were summarized. The opportunities and challenges of this camouflaging strategy for anticancer treatment were also discussed.
Collapse
Affiliation(s)
- Xiaoliang Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| |
Collapse
|
18
|
Xiao G, Zhang Z, Chen Q, Wu T, Shi W, Gan L, Liu X, Huang Y, Lv M, Zhao Y, Wu P, Zhong L, He J. Platelets for cancer treatment and drug delivery. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1231-1237. [PMID: 35218523 DOI: 10.1007/s12094-021-02771-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Extensive research is currently being conducted into a variety of bio-inspired biomimetic nanoparticles (NPs) with new cell simulation functions across the fields of materials science, chemistry, biology, physics, and engineering. Cells such as erythrocytes, platelets, and stem cells have been engineered as new drug carriers. The platelet-derived drug delivery system, which is a new targeted drug delivery system (TDDS), can effectively navigate the blood circulatory system and interact with the complex tumor microenvironment; it appears to outperform traditional anticancer drugs; hence, it has attracted considerable research interest. In this review, we describe innovative studies and outline the latest progress regarding the use of platelets as tumor targeting and drug delivery vehicles; we also highlight opportunities and challenges relevant to the manufacture of tumor-related platelet TDDSs.
Collapse
Affiliation(s)
- Gaozhe Xiao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiaoying Chen
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 41500, China
| | - Wei Shi
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengyu Lv
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pan Wu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,The First People's Hospital of Changde City, Changde, 41500, China.
| |
Collapse
|
19
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
20
|
Biomimetic platelet membrane-coated Nanoparticles for targeted therapy. Eur J Pharm Biopharm 2022; 172:1-15. [DOI: 10.1016/j.ejpb.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
|
21
|
Yang J, Miao X, Guan Y, Chen C, Chen S, Zhang X, Xiao X, Zhang Z, Xia Z, Yin T, Hei Z, Yao W. Microbubble Functionalization with Platelet Membrane Enables Targeting and Early Detection of Sepsis-Induced Acute Kidney Injury. Adv Healthc Mater 2021; 10:e2101628. [PMID: 34514740 DOI: 10.1002/adhm.202101628] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Indexed: 12/11/2022]
Abstract
The morbidity and mortality of sepsis-induced acute kidney injury (SAKI) remain high. Early detection using molecular ultrasound imaging may reduce mortality and improve the prognosis. Inspired by the intrinsic relationship between platelets and SAKI, platelet membrane-coated hybrid microbubbles (Pla-MBs) are designed for early recognition of SAKI. Pla-MBs are prepared by ultrasound-assisted recombination of liposomes and platelets, consisting of inherent platelet membrane isolated from platelets. By coating with platelet membranes, Pla-MBs are endowed with various adhesive receptors (such as integrin αIIbβ3), providing a benefit for selective adhesion to damaged endothelium in SAKI. In a rat SAKI model, by combining the advantages of molecular ultrasound imaging and platelet membrane, Pla-MBs display platelet-mimicking properties and achieve the early targeted diagnosis of SAKI prior to the regular laboratory markers of kidney function. Moreover, the expression of platelet-binding proteins (von Willebrand factor and fibrinogen) in the kidneys shows consistent results with molecular ultrasound imaging. Together, microbubble functionalization with platelet membranes is diagnostically beneficial for SAKI and might be a promising modality for endothelial injury diseases in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Xiaoyan Miao
- Department of Medical Ultrasonic Laboratory of Novel Optoacoustic (Ultrasonic) imaging The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Yu Guan
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Chaojin Chen
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Sufang Chen
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Xinmin Zhang
- Department of Anesthesiology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xue Xiao
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Zheng Zhang
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Zhengyuan Xia
- Department of Medicine The University of Hong Kong Hong Kong 999077 P. R. China
| | - Tinghui Yin
- Department of Medical Ultrasonic Laboratory of Novel Optoacoustic (Ultrasonic) imaging The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Ziqing Hei
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| | - Weifeng Yao
- Department of Anesthesiology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 P. R. China
| |
Collapse
|
22
|
Wang R, Sha X. Biomimetic Drug Delivery Systems Oriented by Biological Function in Tumor Targeting. Curr Drug Targets 2021; 22:882-895. [PMID: 33459231 DOI: 10.2174/1389450122666210114095859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
The emergence of nanoscale drug delivery systems provides new opportunities for targeting the delivery of chemotherapeutic drugs and has achieved excellent results. In recent years, with the rise in the concept of intelligent drug delivery systems, the design and preparation of carriers have become more and more complicated, which is not conducive to clinical transformation. Researchers are gradually focused on biomimetic nanoscale drug delivery systems, trying to combine the physicochemical properties of nanoscale carriers with the natural biological functions of endogenous substances, so as to boost tumor targeting delivery. In this article, we first classify and introduce biomimetic nanoscale drug delivery systems, and then emphasize their unique biological functions. The biomimetic nanoscale drug delivery systems have the advantages of simple preparation, powerful functions, and low immunogenicity, having a good application prospect.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Wang R, Yan H, Yu A, Ye L, Zhai G. Cancer targeted biomimetic drug delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Lv Y, Li F, Wang S, Lu G, Bao W, Wang Y, Tian Z, Wei W, Ma G. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. SCIENCE ADVANCES 2021; 7:eabd7614. [PMID: 33771861 PMCID: PMC7997510 DOI: 10.1126/sciadv.abd7614] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.
Collapse
Affiliation(s)
- Yanlin Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy. Int J Pharm 2021; 598:120395. [PMID: 33639226 DOI: 10.1016/j.ijpharm.2021.120395] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Cell membrane coating strategy is one of the promising techniques for biomimetic functionalization of nanoparticle. The biomimetic nanoparticles camouflage themselves utilizing the fundamental properties of native cells. Cell membranes are extracted from various cells to cloak the nanoparticles for targeted drug delivery. Platelet membrane is one such cell membrane proposing itself as a potential camouflager to escape the immune surveillance and aid prolonged blood circulation with minimum systemic cytotoxicity. Platelets play a very important role in the physiological functions of the body and also feature in few pathological disorders like cancer, atherosclerosis and rheumatoid arthritis. This review comprises of preparation and characterization of platelet membrane camouflaged nanoparticles and also focuses on their recent developments towards targeted therapy in cancer, immune diseases, atherosclerosis and phototherapy. Although platelet membrane camouflaged nanoparticles are currently in the preliminary stage of development, there is huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
|
26
|
Geranpayehvaghei M, Dabirmanesh B, Khaledi M, Atabakhshi-Kashi M, Gao C, Taleb M, Zhang Y, Khajeh K, Nie G. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1702. [PMID: 33538125 DOI: 10.1002/wnan.1702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/03/2023]
Abstract
Platelets, with hemostasis and thrombosis activities, are one of the key components in the blood circulation. As a guard, they rapidly respond to any abnormal blood vessel injury signal and release their granules' contents, which induce their adhesion and aggregation on wound site for hemostasis. Recently, increasing evidence has indicated that platelets are critically involved in the growth and metastasis of cancer cells by releasing a variety of cytokines and chemokines to stimulate cancer cell proliferation and various angiogenic regulators to accelerate tumor angiogenesis. Platelets also secrete active transforming growth factor beta (TGF-β) to promote the epithelial-mesenchymal transition of cancer cells and their extravasation from primary site, and form microthrombus on the surface of cancer cells to protect them from immune attack and high-speed shear force in the circulation. Therefore, blocking platelet-cancer cell interaction may be an attractive strategy to treat primary tumor and/or prevent cancer metastasis. However, systemic inhibition or depletion of platelets brings risk of severe bleeding complication. Cancer-associated-platelets-targeted nanomedicines and biomimetic nanomedicines coated with platelet membrane can be used for targeted anticancer drug delivery, due to their natural targeting ability to tumor cells and platelets. In the current review, we first summarized the platelet mechanisms of action in physiological condition and their multiple roles in cancer progression and conventional antiplatelet therapeutics. We then highlighted the recent progress on the design and fabrication of cancer-associated-platelet-targeted nanomedicines and platelet membrane coating nanomedicines for cancer therapy. Finally, we discussed opportunities and challenges and offered our thoughts for the future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Marzieh Geranpayehvaghei
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Bahareh Dabirmanesh
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khaledi
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Chao Gao
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Mohammad Taleb
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Khosro Khajeh
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.,GBA Research Innovation Institute for Nanotechnology, Guangdong, China
| |
Collapse
|
27
|
A dual-targeting Fe3O4@C/ZnO-DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111455. [DOI: 10.1016/j.msec.2020.111455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
|
28
|
Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release 2020; 327:70-87. [PMID: 32735878 DOI: 10.1016/j.jconrel.2020.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
This review article describes the use of immune cells as potential candidates to deliver anti-cancer drugs deep within the tumor microenvironment. First, the rationale of using drug carriers to target tumors and potentially decrease drug-related side effects is discussed. We further explain some of the current limitations when using nanoparticles for this purpose. Next, a comprehensive step-by-step description of the migration cascade of immune cells is provided as well as arguments on why immune cells can be used to address some of the limitations associated with nanoparticle-mediated drug delivery. We then describe the benefits and drawbacks of using red blood cells, platelets, granulocytes, monocytes, macrophages, myeloid-derived suppressor cells, T cells and NK cells for tumor-targeted drug delivery. An additional section discusses the versatility of nanoparticles to load anti-cancer drugs into immune cells. Lastly, we propose increasing the circulatory half-life and development of conditional release strategies as the two main future pillars to improve the efficacy of immune cell-mediated drug delivery to tumors.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Yang L, Zang G, Li J, Li X, Li Y, Zhao Y. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater 2020; 7:349-358. [PMID: 32793380 PMCID: PMC7414994 DOI: 10.1093/rb/rbaa019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a key mechanism underlying the pathogenesis of cardiovascular disease, which is associated with high morbidity and mortality. In the field of precision medicine for the treatment of atherosclerosis, nanoparticle (NP)-mediated drug delivery systems have great potential, owing to their ability to release treatment locally. Cell-derived biomimetic NPs have attracted extensive attention at present due to their excellent targeting to atherosclerotic inflammatory sites, low immunogenicity and long blood circulation time. Here, we review the utility of cell-derived biomimetic NPs, including whole cells, cell membranes and extracellular vesicles, in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China
- Correspondence address. Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing 400016, China. Tel: +86 18883256765; E-mail:
| |
Collapse
|
30
|
Motais B, Charvátová S, Hrdinka M, Šimíček M, Jelínek T, Ševčíková T, Kořístek Z, Hájek R, Bagó JR. A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers (Basel) 2020; 12:E1333. [PMID: 32456165 PMCID: PMC7281611 DOI: 10.3390/cancers12051333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.
Collapse
Affiliation(s)
- Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Sandra Charvátová
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Michal Šimíček
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Zdeněk Kořístek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Juli R. Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| |
Collapse
|
31
|
Lamichhane P, Deshmukh R, Brown JA, Jakubski S, Parajuli P, Nolan T, Raja D, Badawy M, Yoon T, Zmiyiwsky M, Lamichhane N. Novel Delivery Systems for Checkpoint Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E74. [PMID: 31373327 PMCID: PMC6789831 DOI: 10.3390/medicines6030074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Checkpoint inhibition (CPI) therapies have been proven to be powerful clinical tools in treating cancers. FDA approvals and ongoing clinical development of checkpoint inhibitors for treatment of various cancers highlight the immense potential of checkpoint inhibitors as anti-cancer therapeutics. The occurrence of immune-related adverse events, however, is a major hindrance to the efficacy and use of checkpoint inhibitors as systemic therapies in a wide range of patients. Hence, methods of sustained and tumor-targeted delivery of checkpoint inhibitors are likely to improve efficacy while also decreasing toxic side effects. In this review, we summarize the findings of the studies that evaluated methods of tumor-targeted delivery of checkpoint inhibitors, review their strengths and weaknesses, and discuss the outlook for therapeutic use of these delivery methods.
Collapse
Affiliation(s)
- Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Julie A Brown
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Todd Nolan
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Dewan Raja
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Mary Badawy
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Thomas Yoon
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Mark Zmiyiwsky
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Kola SM, Kumar P, Choonara YE, du Toit LC, Pillay V. Hypothesis: Can drug-loaded platelets be used as delivery vehicles for blood-brain barrier penetration? Med Hypotheses 2019; 125:75-78. [PMID: 30902155 DOI: 10.1016/j.mehy.2019.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Neurovascular conditions are disorders associated with the blood vessels of the brain that are extremely difficult to treat successfully due to the selectivity and fastidious nature of the blood- brain barrier. Consequently, the efficacy of the pharmacological treatments for these conditions are greatly reduced thereby resulting in large amounts of neurovascular-related morbidity and mortality. Platelets are an important component of blood that actively respond to neurovascular distress in the body. Recent research has proven the effectiveness of platelets as drug delivery vehicles, during circumstances where the body naturally elicits a platelet response. This hypothesis highlights the theoretical use of platelets as drug delivery vehicles, able to penetrate the blood-brain barrier, for the treatment of two neurovascular conditions; glioblastoma multiforme and ischemic stroke. The success of the hypothesised system may lead to the development of a novel and extremely necessary delivery mechanism.
Collapse
Affiliation(s)
- S M Kola
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - P Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Y E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - L C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - V Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|