1
|
Shetty R, Khamar P, Kannan R, Thacker P, Kumar NR, Ghosh A, Deshpande V. Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study. Life (Basel) 2025; 15:246. [PMID: 40003656 PMCID: PMC11856829 DOI: 10.3390/life15020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE refractive surgery, such as LASIK and SMILE, induces a wound healing response that leads to significant corneal stromal remodeling. We have shown that the protein profile in the stroma changes dramatically immediately post-surgery. However, the methylation status of the DNA post-refractive surgery remains unknown. DESIGN/PARTICIPANTS DNA methylation study. Refractive surgery (SMILE/LASIK) performed on donor eye globes. METHOD we investigated the epigenetic changes post-surgery in relation to long term ECM remodeling in an experimental ex vivo study design. Donor globes (n = 19) were obtained from the eye bank. Three globes served as non-surgical controls while SMILE (-6DS) and LASIK surgery (-6DS) were performed on eight globes each and incubated for 3 days and 2 weeks (n = 4 per group per time point). Here, we compared the DNA methylation landscapes of LASIK and SMILE stroma using the Illumina Infinium Human Methylation 850 EPIC array (HM850). RESULTS significant changes in DNA methylation patterns were observed post-operatively in both LASIK and SMILE groups. Specific genes involved in the activation of actin cytoskeleton and inflammation (smad3, prkca and ssh2) showed hypomethylation in LASIK after 2 weeks and LASIK SMILE after 3 days, respectively, suggesting their active role in corneal repair. The genes (gaa, gstm1, mgat1, galnt9 and galnt5) involved in sphingolipid metabolism and mucin biosynthesis showed hypomethylation in SMILE after 3 days. CONCLUSIONS our results suggest that altered DNA methylation patterns may have relevance to the development of complications of haze post-refractive surgery. It also presents the opportunity to utilize drugs that regulate chromatin remodeling for optimal outcomes.
Collapse
Affiliation(s)
- Rohit Shetty
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore 560010, India; (R.S.); (P.K.)
| | - Pooja Khamar
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore 560010, India; (R.S.); (P.K.)
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore 560099, India; (R.K.); (P.T.); (N.R.K.)
| | - Puja Thacker
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore 560099, India; (R.K.); (P.T.); (N.R.K.)
| | - Nimisha Rajiv Kumar
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore 560099, India; (R.K.); (P.T.); (N.R.K.)
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore 560099, India; (R.K.); (P.T.); (N.R.K.)
| | - Vrushali Deshpande
- GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore 560099, India; (R.K.); (P.T.); (N.R.K.)
| |
Collapse
|
2
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
3
|
Zhang H, Liu X, Li J, Meng J, Huang W, Su X, Zhang X, Gao G, Wang X, Su H, Zhang F, Zhang T. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front Med 2024; 18:878-895. [PMID: 39269568 DOI: 10.1007/s11684-024-1057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 09/15/2024]
Abstract
Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression-upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xinli Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Meng
- Department of Pharmacy, the Medical Security Centre, Chinese PLA General Hospital, Beijing, 100091, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710038, China
| | - Xuan Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xutao Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710038, China
| | - Guizhou Gao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaodong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China.
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
4
|
HMGA1 Regulates the Expression of Replication-Dependent Histone Genes and Cell-Cycle in Breast Cancer Cells. Int J Mol Sci 2022; 24:ijms24010594. [PMID: 36614035 PMCID: PMC9820469 DOI: 10.3390/ijms24010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment.
Collapse
|
5
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
6
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
8
|
Proteomic Profiling of Saliva and Tears in Radiated Head and Neck Cancer Patients as Compared to Primary Sjögren's Syndrome Patients. Int J Mol Sci 2022; 23:ijms23073714. [PMID: 35409074 PMCID: PMC8998953 DOI: 10.3390/ijms23073714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with head and neck cancer (HNC) and patients with primary Sjögren's syndrome (pSS) may exhibit similar symptoms of dry mouth and dry eyes, as a result of radiotherapy (RT) or a consequence of disease progression. To identify the proteins that may serve as promising disease biomarkers, we analysed saliva and tears from 29 radiated HNC patients and 21 healthy controls, and saliva from 14 pSS patients by mass spectrometry-based proteomics. The study revealed several upregulated, and in some instances overlapping, proteins in the two patient groups. Histone H1.4 and neutrophil collagenase were upregulated in whole saliva of both patient groups, while caspase-14, histone H4, and protein S100-A9 were upregulated in HNC saliva only. In HCN tear fluid, the most highly upregulated protein was mucin-like protein 1. These overexpressed proteins in saliva and tears play central roles in inflammation, host cell injury, activation of reactive oxygen species, and tissue repair. In conclusion, the similarities and differences in overexpressed proteins detected in saliva from HNC and pSS patients may contribute to the overall understanding of the different pathophysiological mechanisms inducing dry mouth. Thus, the recurring proteins identified could possibly serve as future promising biomarkers.
Collapse
|
9
|
Jiang X, Wen J, Paver E, Wu Y, Sun G, Bullman A, Dahlstrom J, Tremethick DJ, Soboleva TA. H2A.B is a cancer/testis factor involved in the activation of ribosome biogenesis in Hodgkin lymphoma. EMBO Rep 2021; 22:e52462. [PMID: 34350706 PMCID: PMC8339673 DOI: 10.15252/embr.202152462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Testis-specific regulators of chromatin function are commonly ectopically expressed in human cancers, but their roles are poorly understood. Examination of 81 primary Hodgkin lymphoma (HL) samples showed that the ectopic expression of the eutherian testis-specific histone variant H2A.B is an inherent feature of HL. In experiments using two HL cell lines derived from different subtypes of HL, H2A.B knockdown inhibited cell proliferation. H2A.B was enriched in both nucleoli of these HL cell lines and primary HL samples. We found that H2A.B enhanced ribosomal DNA (rDNA) transcription, was enriched at the rDNA promoter and transcribed regions, and interacted with RNA Pol I. Depletion of H2A.B caused the loss of RNA Pol I from rDNA chromatin. Remarkably, H2A.B was also required for high levels of ribosomal protein gene expression being located at the transcriptional start site and within the gene body. H2A.B knockdown reduced gene body chromatin accessibility of active RNA Pol II genes concurrent with a decrease in transcription. Taken together, our data show that in HL H2A.B has acquired a new function, the ability to increase ribosome biogenesis.
Collapse
Affiliation(s)
- Xuanzhao Jiang
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jiayu Wen
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Elizabeth Paver
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred HospitalSydneyNSWAustralia
| | - Yu‐Huan Wu
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
IQVIA Solutions Taiwan Ltd.Taipei CityTaiwan
| | - Gege Sun
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug DiscoveryHong Kong Polytechnic UniversityHong KongChina
| | - Amanda Bullman
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
| | - Jane E Dahlstrom
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
- Australian National University Medical SchoolThe Australian National UniversityCanberraACTAustralia
| | - David J Tremethick
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Tatiana A Soboleva
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
10
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
11
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
12
|
Flaus A, Downs JA, Owen-Hughes T. Histone isoforms and the oncohistone code. Curr Opin Genet Dev 2021; 67:61-66. [PMID: 33285512 DOI: 10.1016/j.gde.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Recent studies have highlighted the potential for missense mutations in histones to act as oncogenic drivers, leading to the term 'oncohistones'. While histone proteins are highly conserved, they are encoded by multigene families. There is heterogeneity among these genes at the level of the underlying sequence, the amino acid composition of the encoded histone isoform, and the expression levels. One question that arises, therefore, is whether all histone-encoding genes function equally as oncohistones. In this review, we consider this question and explore what this means in terms of the mechanisms by which oncohistones can exert their effects in chromatin.
Collapse
Affiliation(s)
- Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
13
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Divergent organ-specific isogenic metastatic cell lines identified using multi-omics exhibit differential drug sensitivity. PLoS One 2020; 15:e0242384. [PMID: 33196681 PMCID: PMC7668614 DOI: 10.1371/journal.pone.0242384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Monitoring and treating metastatic progression remains a formidable task due, in part, to an inability to monitor specific differential molecular adaptations that allow the cancer to thrive within different tissue types. Hence, to develop optimal treatment strategies for metastatic disease, an important consideration is the divergence of the metastatic cancer growing in visceral organs from the primary tumor. We had previously reported the establishment of isogenic human metastatic breast cancer cell lines that are representative of the common metastatic sites observed in breast cancer patients. Methods Here we have used proteomic, RNAseq, and metabolomic analyses of these isogenic cell lines to systematically identify differences and commonalities in pathway networks and examine the effect on the sensitivity to breast cancer therapeutic agents. Results Proteomic analyses indicated that dissemination of cells from the primary tumor sites to visceral organs resulted in cell lines that adapted to growth at each new site by, in part, acquiring protein pathways characteristic of the organ of growth. RNAseq and metabolomics analyses further confirmed the divergences, which resulted in differential efficacies to commonly used FDA approved chemotherapeutic drugs. This model system has provided data that indicates that organ-specific growth of malignant lesions is a selective adaptation and growth process. Conclusions The insights provided by these analyses indicate that the rationale of targeted treatment of metastatic disease may benefit from a consideration that the biology of metastases has diverged from the primary tumor biology and using primary tumor traits as the basis for treatment may not be ideal to design treatment strategies.
Collapse
|
15
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
16
|
Behrends M, Engmann O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa013. [PMID: 33214908 PMCID: PMC7660118 DOI: 10.1093/eep/dvaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen 07747, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen 07747, Germany
| |
Collapse
|
17
|
Chen E, Bohm K, Rosenblatt M, Kang K. Epigenetic regulation of anterior segment diseases and potential therapeutics. Ocul Surf 2020; 18:383-395. [PMID: 32344150 DOI: 10.1016/j.jtos.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
In recent years, technological advances in sequencing have accelerated our understanding of epigenetics in ocular development and ophthalmic diseases. We now know that epigenetic modifications are necessary for normal ocular development and biological processes such as corneal wound healing and ocular surface repair, while aberrant epigenetic regulation underlies the pathogenesis of a wide range of ocular diseases, including cataracts and various diseases of the ocular surface. As the epigenetics of the eye is a constantly changing field of medicine, this comprehensive review focuses on innovations and scientific discoveries related to epigenetic control of anterior segment diseases that were published in the English literature in the past five years. These recent studies attempt to elucidate therapeutic targets for the anterior segment pathological processes. Already, recent studies have shown therapeutic potential in targeting epigenetic mechanisms of ocular diseases, and new epigenetic therapies are on the verge of being introduced to clinical practice. New drug targets can potentially emerge as we make further discoveries within this field.
Collapse
Affiliation(s)
- Eric Chen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kelley Bohm
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
18
|
Kotowski U, Erović BM, Schnöll J, Stanek V, Janik S, Steurer M, Mitulović G. Quantitative proteome analysis of Merkel cell carcinoma cell lines using SILAC. Clin Proteomics 2019; 16:42. [PMID: 31889939 PMCID: PMC6921584 DOI: 10.1186/s12014-019-9263-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumour of the skin with growing incidence. To better understand the biology of this malignant disease, immortalized cell lines are used in research for in vitro experiments. However, a comprehensive quantitative proteome analysis of these cell lines has not been performed so far. METHODS Stable isotope labelling by amino acids in cell culture (SILAC) was applied to six MCC cell lines (BroLi, MKL-1, MKL-2, PeTa, WaGa, and MCC13). Following tryptic digest of labelled proteins, peptides were analysed by mass spectrometry. Proteome patterns of MCC cell lines were compared to the proteome profile of an immortalized keratinocyte cell line (HaCaT). RESULTS In total, 142 proteins were upregulated and 43 proteins were downregulated. Altered proteins included mitoferrin-1, histone H2A type 1-H, protein-arginine deiminase type-6, heterogeneous nuclear ribonucleoproteins A2/B1, protein SLX4IP and clathrin light chain B. Furthermore, several proteins of the histone family and their variants were highly abundant in MCC cell lines. CONCLUSIONS The results of this study present a new protein map of MCC and provide deeper insights in the biology of MCC. Data are available via ProteomeXchange with identifier PXD008181.
Collapse
Affiliation(s)
- Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Boban M. Erović
- Institute of Head and Neck Diseases, Evangelical Hospital Vienna, 1180 Vienna, Austria
| | - Julia Schnöll
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Janik
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Steurer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Goran Mitulović
- Proteomics Core Facility, Medical University of Vienna, 1090 Vienna, Austria
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
19
|
Histone stress: an unexplored source of chromosomal instability in cancer? Curr Genet 2019; 65:1081-1088. [DOI: 10.1007/s00294-019-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
|