1
|
Zhan K, Liu H, Dai L, Zhang D, Liu W, Cui J, Wang J. Altered static and dynamic functional network connectivity and combined Machine learning in asthma. Neuroscience 2025; 576:223-233. [PMID: 40294842 DOI: 10.1016/j.neuroscience.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Asthma is a reversible disease characterized by airflow limitation and chronic airway inflammation. Previous neuroimaging studies have shown structural and functional abnormalities in the brains of individuals with asthma. However, earlier research has primarily focused on static changes in brain activity, neglecting the effects of asthma on the dynamic characteristics of functional brain networks. This study included 31 asthma patients and 31 healthy controls (HCs). Independent component analysis (ICA) was employed to extract changes in static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) from the acquired data. Compared to the HC group, the overall functional connectivity (FC) within the visual network (VN) in asthma patients declined, whereas the FC in the auditory network (AN) and cerebellar network (CN) increased. Additionally, functional network connectivity (FNC) analysis revealed enhanced connectivity between the VN and AN, as well as between the VN and executive control network (ECN), while AN-AN functional connectivity was reduced. The dFNC was primarily characterized by abnormal connections among the default mode network (DMN), AN, and other brain regions. The support vector machine (SVM) model based on FC and FNC demonstrates excellent performance in distinguishing asthma patients from HCs. Our findings highlight significant alterations in functional connectivity within the sFNC and dFNC of asthma patients. These results enhance our understanding of the potential neurobiological mechanisms underlying emotional deficits and cognitive impairments in asthma patients. Furthermore, they provide additional neuroimaging evidence that may be helpful for researchers in identifying potential neurobiological markers to differentiate asthma patients from HCs.
Collapse
Affiliation(s)
- KangMin Zhan
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Hao Liu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - LiXue Dai
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - DePing Zhang
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Wei Liu
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - JiaYi Cui
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Li W, Fan W, Zhang S, Zhang H, Zhang D, Wen L. Aberrant cerebral activity in patients with unruptured intracranial aneurysm: a resting-state functional MRI study. Brain Struct Funct 2025; 230:68. [PMID: 40394222 DOI: 10.1007/s00429-025-02934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Patients carrying unruptured intracranial aneurysm (UIA) often experience emotional alterations and cognitive impairments. While the specific mechanisms underlying these impairments are still not fully understood. The study measured the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) to investigate the abnormal brain functional alterations in 49 UIA patients compared with 50 healthy controls, and also analyzed the correlations among neuroimaging indices, the clinical data, and the neuropsychological test results. UIA patients exhibited more active brain region activity in the right hippocampus than the healthy group and showed negatively activated brain regions, including the cuneus, left paracentral lobule, and right postcentral gyrus. Furthermore, the strength of FC decreased in the bilateral middle cingulate gyrus; right superior temporal gyrus and insula; and left parahippocampal gyrus, fusiform gyrus, lingual gyrus, inferior frontal gyrus, and middle frontal gyrus. The abnormal activities in the aforementioned brain regions were closely linked to worse performance in emotion and cognition. The study presents a potential neuroimaging-based mechanism of brain function that could explain the emotional alterations and cognitive impairments in UIA patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Department of Radiology, 987th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Baoji, 721015, Shaanxi Province, People's Republic of China
| | - Weijie Fan
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Si Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Haiyu Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Li Wen
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
3
|
Christopher-Hayes NJ, Ghetti S. Neurocognitive risks of asthma during childhood. Dev Cogn Neurosci 2025; 73:101564. [PMID: 40349572 DOI: 10.1016/j.dcn.2025.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
The impact of chronic medical conditions on the developing brain has gained recent attention, but the neurocognitive risks associated with asthma, which has high prevalence in childhood, are still largely unknown. Recent findings have underscored that children with asthma may be at higher risk for developing cognitive difficulties. In this review, we examine the pathophysiology of asthma and its associations with brain and cognitive development based on rodent models and relatively scant research in humans. We also examine risk factors that may exacerbate asthma symptoms and neurocognitive outcomes, and we discuss why children may be particularly vulnerable to asthma-related neurocognitive consequences. We conclude by providing a framework for future research.
Collapse
Affiliation(s)
- Nicholas J Christopher-Hayes
- Center for Mind and Brain, University of California, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, CA 95616, USA.
| | - Simona Ghetti
- Center for Mind and Brain, University of California, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Wang T, Huang X, Dai LX, Zhan KM, Wang J. Functional connectivity alterations in the thalamus among patients with bronchial asthma. Front Neurol 2024; 15:1378362. [PMID: 38798710 PMCID: PMC11116975 DOI: 10.3389/fneur.2024.1378362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Bronchial Asthma (BA) is a common chronic respiratory disease worldwide. Earlier research has demonstrated abnormal functional connectivity (FC) in multiple cognition-related cortices in asthma patients. The thalamus (Thal) serves as a relay center for transmitting sensory signals, yet the modifications in the thalamic FC among individuals with asthma remain uncertain. This research employed the resting-state functional connectivity (rsFC) approach to explore alterations in thalamic functional connectivity among individuals with BA. Patients and methods After excluding participants who did not meet the criteria, this study finally included 31 patients with BA, with a gender distribution of 16 males and 15 females. Subsequently, we recruited 31 healthy control participants (HC) matched for age, gender, and educational background. All participants underwent the Montreal Cognitive Assessment (MoCA) and the Hamilton Depression Rating Scale (HAMD) assessment. Following this, both groups underwent head magnetic resonance imaging scans, and resting-state functional magnetic resonance imaging (rs-fMRI) data was collected. Based on the AAL (Automated Anatomical Labeling) template, the bilateral thalamic regions were used as seed points (ROI) for subsequent rsFC research. Pearson correlation analysis was used to explore the relationship between thalamic functional connectivity and neuropsychological scales in both groups. After controlling for potential confounding factors such as age, gender, intelligence, and emotional level, a two-sample t-test was further used to explore differences in thalamic functional connectivity between the two groups of participants. Result Compared to the HC group, the BA group demonstrated heightened functional connectivity (FC) between the left thalamus and the left cerebellar posterior lobe (CPL), left postcentral gyrus (PCG), and right superior frontal gyrus (SFG). Concurrently, there was a decrease in FC with both the Lentiform Nucleus (LN) and the left corpus callosum (CC). Performing FC analysis with the right thalamus as the Region of Interest (ROI) revealed an increase in FC between the right thalamus and the right SFG as well as the left CPL. Conversely, a decrease in FC was observed between the right thalamus and the right LN as well as the left CC. Conclusion In our study, we have verified the presence of aberrant FC patterns in the thalamus of BA patients. When compared to HCs, BA patients exhibit aberrant alterations in FC between the thalamus and various brain areas connected to vision, hearing, emotional regulation, cognitive control, somatic sensations, and wakefulness. This provides further confirmation of the substantial role played by the thalamus in the advancement of BA.
Collapse
Affiliation(s)
- Tao Wang
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Li-xue Dai
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Kang-min Zhan
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
5
|
Guan Y, Ma H, Liu J, Xu L, Zhang Y, Tian L. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Brain Imaging Behav 2023; 17:628-638. [PMID: 37553449 DOI: 10.1007/s11682-023-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.
Collapse
Affiliation(s)
- Yun Guan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China
| | - Hao Ma
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangcong Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Le Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yang Zhang
- Department of Orthopedics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
6
|
Wang T, Huang X, Dai LX, Zhan KM, Wang J. Investigation of altered spontaneous brain activity in patients with bronchial asthma using the percent amplitude of fluctuation method: a resting-state functional MRI study. Front Hum Neurosci 2023; 17:1228541. [PMID: 38098762 PMCID: PMC10719853 DOI: 10.3389/fnhum.2023.1228541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose To explore the regions of aberrant spontaneous brain activity in asthma patients and their potential impacts using the Percent amplitude of fluctuation (PerAF) analysis method. Patients and methods In this study, a total of 31 bronchial asthma (BA) patients were ultimately included, comprising 17 males and 14 females. Subsequently, 31 healthy control subjects (HCS) were recruited, consisting of 17 males and 14 females, and they were matched with the BA group based on age, sex, and educational status. The PerAF analysis technique was employed to study the differences in spontaneous brain activity between the two groups. The SPM12 toolkit was used to carry out a two sample t-test on the collected fMRI data, in order to examine the differences in PerAF values between the asthma patients and the healthy controls. We employed the Montreal Cognitive Assessment (MoCA) scale and the Hamilton Depression Scale (HAMD) to evaluate the cognitive and emotional states of the two groups. Pearson correlation analysis was utilized to ascertain the relationship between changes in the PerAF values within specific brain regions and cognitive as well as emotional conditions. Results Compared with the healthy control group, areas of the brain with reduced PerAF in asthma patients included the inferior cerebellum, fusiform gyrus, right inferior orbital frontal gyrus, left middle orbital frontal gyrus, left/right middle frontal gyrus (MFG), dorsal lateral superior frontal gyrus (SFGdl), left superior temporal gyrus (STG), precuneus, right inferior parietal lobule (IPL), and left/right angular gyrus. BA patients exhibit mild cognitive impairments and a propensity for emotional disturbances. Furthermore, the perAF values of the SFGdl region are significantly positively correlated with the results of the MoCA cognitive assessment, while negatively correlated with the HAMD evaluation. Conclusion Through the application of PerAF analysis methods, we discovered that several brain regions in asthma patients that control the amplitude of respiration, vision, memory, language, attention, and emotional control display abnormal changes in intrinsic brain activity. This helps characterize the neural mechanisms behind cognitive, sensory, and motor function impairments in asthma patients, providing valuable insights for potential therapeutic targets and disease management strategies.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Li-xue Dai
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Kang-min Zhan
- Medical College of Nanchang University, Nanchang, China
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
7
|
Wang T, Huang X, Wang J. Asthma's effect on brain connectivity and cognitive decline. Front Neurol 2023; 13:1065942. [PMID: 36818725 PMCID: PMC9936195 DOI: 10.3389/fneur.2022.1065942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the changes in dynamic voxel mirror homotopy connection (dVMHC) between cerebral hemispheres in patients with asthma. Methods Our study was designed using a case-control method. A total of 31 subjects with BA and 31 healthy subjects with matching basic information were examined using rsfMRI. We also calculated and obtained the dVMHC value between the cerebral cortexes. Results Compared with the normal control group, the dVMHC of the lingual gyrus (Ling) and the calcarine sulcus (CAL), which represented the visual network (VN), increased significantly in the asthma group, while the dVMHC of the medial superior frontal gyrus (MSFG), the anterior/middle/posterior cingulate gyrus (A/M/PCG), and the supplementary motor area (SMA) of the sensorimotor network decreased significantly in the asthma group. Conclusion This study showed that the ability of emotion regulation and the efficiency of visual and cognitive information processing in patients with BA was lower than in those in the HC group. The dVMHC analysis can be used to sensitively evaluate oxygen saturation, visual function changes, and attention bias caused by emotional disorders in patients with asthma, as well as to predict airway hyperresponsiveness, inflammatory progression, and dyspnea.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China,The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China,*Correspondence: Jun Wang ✉
| |
Collapse
|
8
|
Asthma Induces Psychiatric Impairments in Association With Default Mode and Salience Networks Alteration: A Resting-state EEG Study. Respir Physiol Neurobiol 2022; 300:103870. [DOI: 10.1016/j.resp.2022.103870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
9
|
Abstract
The clinical term dyspnea (a.k.a. breathlessness or shortness of breath) encompasses at least three qualitatively distinct sensations that warn of threats to breathing: air hunger, effort to breathe, and chest tightness. Air hunger is a primal homeostatic warning signal of insufficient alveolar ventilation that can produce fear and anxiety and severely impacts the lives of patients with cardiopulmonary, neuromuscular, psychological, and end-stage disease. The sense of effort to breathe informs of increased respiratory muscle activity and warns of potential impediments to breathing. Most frequently associated with bronchoconstriction, chest tightness may warn of airway inflammation and constriction through activation of airway sensory nerves. This chapter reviews human and functional brain imaging studies with comparison to pertinent neurorespiratory studies in animals to propose the interoceptive networks underlying each sensation. The neural origins of their distinct sensory and affective dimensions are discussed, and areas for future research are proposed. Despite dyspnea's clinical prevalence and impact, management of dyspnea languishes decades behind the treatment of pain. The neurophysiological bases of current therapeutic approaches are reviewed; however, a better understanding of the neural mechanisms of dyspnea may lead to development of novel therapies and improved patient care.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States; Faculty of Health Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
10
|
Anxiety-like behavior induced by allergen is associated with decreased irregularity of breathing pattern in rats. Respir Physiol Neurobiol 2022; 298:103847. [DOI: 10.1016/j.resp.2022.103847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
|
11
|
Huang H, Li SY, Shi L, Huang X, Wang J. Altered spontaneous brain activity in patients with asthma: a resting-state functional MRI study using regional homogeneity analysis. Neuroreport 2021; 32:1403-1407. [PMID: 34743166 DOI: 10.1097/wnr.0000000000001736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Studies have shown that patients with asthma have changes in brain function activities, but the specific relationship is still unknown. This study aims to investigate the potential regional homogeneity (ReHo) brain activity changes in patients with asthma and healthy controls. METHODS Thirty-one patients with asthma and 31 healthy controls closely matched in age, sex, and weight underwent resting-state functional MRI scans, respectively. The ReHo method was applied to evaluate synchronous neural activity changes. Receiver operating characteristic curve was used to show high test-retest stability and a high degree of sensitivity and specificity. RESULTS Compared with the healthy controls, asthma patients had significantly increased ReHo values in left cerebellum posterior lobe and left superior frontal gyrus, and decreased ReHo values of right middle temporal gyrus, right Putamen, right inferior temporal gyrus, right inferior middle frontal gyrus, left middle occipital gyrus, and right precentral/middle frontal gyrus. CONCLUSION Patients with asthma have different functional changes in different brain regions, mainly including the cerebellum, frontal lobe, temporal lobe, and occipital lobe, which provides important pieces of evidence to support the role of brain networks in the pathophysiology of asthma and offers an entirely new target for potential therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | | | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
12
|
Wu YJ, Rao J, Huang X, Wu N, Shi L, Huang H, Li SY, Chen XL, Huang SQ, Zhong PP, Wu XR, Wang J. Impaired Interhemispheric Synchrony in Bronchial Asthma. Int J Gen Med 2021; 14:10315-10325. [PMID: 34992446 PMCID: PMC8713883 DOI: 10.2147/ijgm.s343269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Ya-Jun Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jie Rao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Na Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiao-Lin Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Shui-Qin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Pei-Pei Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jun Wang
- Department of Respiratory Disease, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- Correspondence: Jun Wang Email
| |
Collapse
|
13
|
Xu W, Song Y, Chen S, Xue C, Hu G, Qi W, Ma W, Lin X, Chen J. An ALE Meta-Analysis of Specific Functional MRI Studies on Subcortical Vascular Cognitive Impairment. Front Neurol 2021; 12:649233. [PMID: 34630270 PMCID: PMC8492914 DOI: 10.3389/fneur.2021.649233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Subcortical vascular cognitive impairment (sVCI), caused by cerebral small vessel disease, accounts for the majority of vascular cognitive impairment, and is characterized by an insidious onset and impaired memory and executive function. If not recognized early, it inevitably develops into vascular dementia. Several quantitative studies have reported the consistent results of brain regions in sVCI patients that can be used to predict dementia conversion. The purpose of the study was to explore the exact abnormalities within the brain in sVCI patients by combining the coordinates reported in previous studies. Methods: The PubMed, Embase, and Web of Science databases were thoroughly searched to obtain neuroimaging articles on the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in sVCI patients. According to the activation likelihood estimation (ALE) algorithm, a meta-analysis based on coordinate and functional connectivity modeling was conducted. Results: The quantitative meta-analysis included 20 functional imaging studies on sVCI patients. Alterations in specific brain regions were mainly concentrated in the frontal lobes including the middle frontal gyrus, superior frontal gyrus, medial frontal gyrus, and precentral gyrus; parietal lobes including the precuneus, angular gyrus, postcentral gyrus, and inferior parietal lobule; occipital lobes including the lingual gyrus and cuneus; temporal lobes including the fusiform gyrus and middle temporal gyrus; and the limbic system including the cingulate gyrus. These specific brain regions belonged to important networks known as the default mode network, the executive control network, and the visual network. Conclusion: The present study determined specific abnormal brain regions in sVCI patients, and these brain regions with specific changes were found to belong to important brain functional networks. The findings objectively present the exact abnormalities within the brain, which help further understand the pathogenesis of sVCI and identify them as potential imaging biomarkers. The results may also provide a basis for new approaches to treatment.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zhang Y, Kong Y, Yang Y, Yin Y, Hou Z, Xu Z, Yuan Y. Asthma-Specific Temporal Variability Reveals the Effect of Group Cognitive Behavior Therapy in Asthmatic Patients. Front Neurol 2021; 12:615820. [PMID: 33776882 PMCID: PMC7994749 DOI: 10.3389/fneur.2021.615820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Group cognitive behavior therapy (GCBT) is a successful therapy for asthma. However, the neural biomarker of GCBT which could be used in clinic remains unclear. The temporal variability is a novel concept to characterize the dynamic functional connectivity (FC), which has many advantages as biomarker. Therefore, the aim of this study is to explore the potential difference of temporal variability between asthmatic patients and healthy controls, then determine the different patterns of temporal variability between pre- and post-treatment group and reveal the relationship between the variability and the symptoms improvement reduced by GCBT. Methods: At baseline, 40 asthmatic patients and 40 matched controls received resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments. After 8 weeks of GCBT treatment, 17 patients received fMRI scans, and assessments again. Temporal variability at baseline and post-treatment were calculated for further analysis. Results: Compared with controls, asthmatic patients showed widespread decreases in temporal variability. Moreover, the variability in both right caudate and left putamen were positively correlated with asthma control level. After GCBT, asthma control level and depression of patients were improved. Meanwhile, compared with pre-GCBT, patients after treatment showed lower variability in left opercular of Rolandic, right parahippocampal gyrus and right lingual gyrus, as well as higher variability in left temporal pole. Variability in regions which were found abnormal at baseline did not exhibit significant differences between post-GCBT and controls. Conclusions: Asthma-specific changes of dynamic functional connectivity may serve as promising underpinnings of GCBT for asthma. Clinical Trial Registration: http://www.chictr.org.cn/index.aspx, identifier: Chi-CTR-15007442.
Collapse
Affiliation(s)
- Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Youyong Kong
- Lab of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yuan Yang
- Department of Respiratory, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingyin Yin
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Xu W, Chen S, Xue C, Hu G, Ma W, Qi W, Lin X, Chen J. Functional MRI-Specific Alterations in Executive Control Network in Mild Cognitive Impairment: An ALE Meta-Analysis. Front Aging Neurosci 2020; 12:578863. [PMID: 33192472 PMCID: PMC7581707 DOI: 10.3389/fnagi.2020.578863] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease (AD) dementia. MCI individuals with deficits in executive function are at higher risk for progressing to AD dementia. Currently, there is no consistent result for alterations in the executive control network (ECN) in MCI, which makes early prediction of AD conversion difficult. The aim of the study was to find functional MRI-specific alterations in ECN in MCI patients by expounding on the convergence of brain regions with functional abnormalities in ECN. Methods: We searched PubMed, Embase, and Web of Science to identify neuroimaging studies using methods including the amplitude of low frequency fluctuation/fractional amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in MCI patients. Based on the Activation Likelihood Estimation algorithm, the coordinate-based meta-analysis and functional meta-analytic connectivity modeling were conducted. Results: A total of 25 functional imaging studies with MCI patients were included in a quantitative meta-analysis. By summarizing the included articles, we obtained specific brain region changes, mainly including precuneus, cuneus, lingual gyrus, middle frontal gyrus, posterior cingulate cortex, and cerebellum posterior lobe, in the ECN based on these three methods. The specific abnormal brain regions indicated that there were interactions between the ECN and other networks. Conclusions: This study confirms functional imaging specific abnormal markers in ECN and its interaction with other networks in MCI. It provides novel targets and pathways for individualized and precise interventions to delay the progression of MCI to AD.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|