1
|
Cui FJ, Yang YM, Sun L, Zan XY, Sun WJ, Zeb U. Grifola frondosa polysaccharides: A review on structure/activity, biosynthesis and engineering strategies. Int J Biol Macromol 2024; 257:128584. [PMID: 38056754 DOI: 10.1016/j.ijbiomac.2023.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Polysaccharides are the main polymers in edible fungi Grifola frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. Recent efforts have well elucidated the fine structures and biological functions of G. frondosa polysaccharides. The recently-rapid developments and increasing availability in fungal genomes also accelerated the better understanding of key genes and pathways involved in biosynthesis of G. frondosa polysaccharides. Herein, we provide a brief overview of G. frondosa polysaccharides and their activities, and comprehensively outline the complex process, genes and proteins corresponding to G. frondosa polysaccharide biosynthesis. The regulation strategies including strain improvement, process optimization and genetic engineering were also summarized for maximum production of G. frondosa polysaccharides. Some remaining unanswered questions in describing the fine synthesis machinery were also pointed out to open up new avenues for answering the structure-activity relationship and improving polysaccharide biosynthesis in G. frondosa. The review hopefully presents a reasonable full picture of activities, biosynthesis, and production regulation of polysaccharide in G. frondosa.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Li E, Li S, Wang S, Li Q, Pang D, Yang Q, Zhu Q, Zou Y. Antibacterial Effects of Ramulus mori Oligosaccharides against Streptococcus mutans. Foods 2023; 12:3182. [PMID: 37685114 PMCID: PMC10486356 DOI: 10.3390/foods12173182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Ramulus mori has been widely used in traditional Chinese medicine because of its physiological activities, including antibacterial, anti-inflammatory, and antioxidant activities. Antimicrobial properties of Ramulus mori extract have been well described. However, no information is available regarding on Ramulus mori oligosaccharides (RMOS). The aim of this study was to investigate the effects of RMOS on the growth and virulence properties of the cariogenic bacterium Streptococcus mutans. The effects of RMOS on the biofilm structure and virulence gene expression of S. mutans were also evaluated, and the results were compared with the effects of commercial prebiotic galactooligosaccharides. RMOS were found to have an antibacterial effect against S. mutans, resulting in significant reductions in acid production, lactate dehydrogenase activity, adhesion, insoluble extracellular polysaccharide production, glucosyltransferase activity, and biofilm formation in a dose-dependent manner. Moreover, the biofilm structure was visibly damaged. A quantitative real-time PCR assay revealed downregulation of virulence gene-regulated acid production, polysaccharide production, adhesion, biofilm formation, and quorum sensing. These findings suggest that RMOS may be a promising natural product for the prevention of dental caries.
Collapse
Affiliation(s)
- Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Shipei Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Daorui Pang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiong Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiaoling Zhu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| |
Collapse
|
4
|
Shi S, Chang M, Liu H, Ding S, Yan Z, Si K, Gong T. The Structural Characteristics of an Acidic Water-Soluble Polysaccharide from Bupleurum chinense DC and Its In Vivo Anti-Tumor Activity on H22 Tumor-Bearing Mice. Polymers (Basel) 2022; 14:polym14061119. [PMID: 35335457 PMCID: PMC8952506 DOI: 10.3390/polym14061119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the preliminary structural characteristics and in vivo anti-tumor activity of an acidic water-soluble polysaccharide (BCP) separated purified from Bupleurum chinense DC root. The preliminary structural characterization of BCP was established using UV, HPGPC, FT-IR, IC, NMR, SEM, and Congo red. The results showed BCP as an acidic polysaccharide with an average molecular weight of 2.01 × 103 kDa. Furthermore, we showed that BCP consists of rhamnose, arabinose, galactose, glucose, and galacturonic acid (with a molar ratio of 0.063:0.788:0.841:1:0.196) in both α- and β-type configurations. Using the H22 tumor-bearing mouse model, we assessed the anti-tumor activity of BCP in vivo. The results revealed the inhibitory effects of BCP on H22 tumor growth and the protective actions against tissue damage of thymus and spleen in mice. In addition, the JC-1 FITC-AnnexinV/PI staining and cell cycle analysis have collectively shown that BCP is sufficient to induce apoptosis and of H22 hepatocarcinoma cells in a dose-dependent manner. The inhibitory effect of BCP on tumor growth was likely attributable to the S phase arrest. Overall, our study presented significant anti-liver cancer profiles of BCP and its promising therapeutic potential as a safe and effective anti-tumor natural agent.
Collapse
|
5
|
Zuofa Z, Chao W, Weiming C, Tingting S, Guoying L. Effects of dehydration and extraction techniques on the physicochemical properties and antioxidant activities of Oudemansiella radicata polysaccharides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Zhang J, Liu D, Wen C, Liu J, Xu X, Liu G, Kan J, Qian C, Jin C. New light on Grifola frondosa polysaccharides as biological response modifiers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Zhao F, Guo Z, Ma ZR, Ma LL, Zhao J. Antitumor activities of Grifola frondosa (Maitake) polysaccharide: A meta-analysis based on preclinical evidence and quality assessment. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114395. [PMID: 34271115 DOI: 10.1016/j.jep.2021.114395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antitumor effects of Grifola frondosa/maitake polysaccharide (GFP) have been reported in many preclinical studies, especially in vivo experiments. The present meta-analysis aimed to provide an in vivo evidence and theoretical basis for future clinical trials by assessing the efficacy and underlying mechanisms of GFP in tumor treatment. MATERIALS AND METHODS English and Chinese databases were examined to include animal experiments to study the antitumor activity of GFP. Literature screening, data extraction, and meta-analysis were conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In addition, the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias (RoB) tool was used to assess the risk of bias of the included animal studies. RESULTS Potentially relevant studies (442) were identified, and finally 24 eligible studies (all in English) were included. The meta-analysis revealed that GFP has significant effects in inhibiting tumor growth (high dose: mean difference (MD) = -1.34, 95% confidence interval (CI) = [-1.73, -0.95]; low dose: MD = -5.68, 95% CI = [-7.27, -4.09]), improving tumor remission rate (odds ratio = 25.59, 95% CI = [9.08, 72.11]), and enhancing immune function in both cellular (CD4+ T cell percentage: MD = 3.03, 95% CI = [1.16, 4.90]; CD8+ T cell percentage: MD = 1.10, 95% CI = [-0.29, 2.49]) and humoral immunity (MD and [95% CI] of interleukin (IL)-2, IL-12 and tumor necrosis factor-α were 7.86 [6.29, 9.44], 35.95 [5.18, 66.72], and 10.03 [8.71, 11.36], respectively), and the differences between the two groups of the above indicators were statistically significant (all P < 0.01) except CD8+ T cell percentage. Additionally, the quality of the included studies was not high, and the risk of bias mainly concentrated on selection, detection, and reporting biases. CONCLUSION GFP is a potential candidate for tumor treatment and clinical trials. TRIAL REGISTRATION The review protocol for this study was registered with the PROSPERO database before beginning the review process (CRD42018108897).
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| | - Zhong Guo
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| | - Zhong-Ren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Ling-Li Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.
| | - Jin Zhao
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
8
|
Wu JY, Siu KC, Geng P. Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021; 10:foods10010095. [PMID: 33466429 PMCID: PMC7824844 DOI: 10.3390/foods10010095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Grifola frondosa (G. frondosa), generally known as hen-of-the-woods or maitake in Japanese and hui-shu-hua in Chinese, is an edible mushroom with both nutritional and medicinal properties. This review provides an up-to-date and comprehensive summary of research findings on its bioactive constituents, potential health benefits and major structural characteristics. Since the discovery of the D-fraction more than three decades ago, many other polysaccharides, including β-glucans and heteroglycans, have been extracted from the G. frondosa fruiting body and fungal mycelium, which have shown significant antitumor and immunomodulatory activities. Another class of bioactive macromolecules in G. frondosa is composed of proteins and glycoproteins, which have shown antitumor, immunomodulation, antioxidant and other activities. A number of small organic molecules such as sterols and phenolic compounds have also been isolated from the fungus and have shown various bioactivities. It can be concluded that the G. frondosa mushroom provides a diverse array of bioactive molecules that are potentially valuable for nutraceutical and pharmaceutical applications. More investigation is needed to establish the structure–bioactivity relationship of G. frondosa and to elucidate the mechanisms of action behind its various bioactive and pharmacological effects.
Collapse
Affiliation(s)
| | | | - Ping Geng
- Correspondence: ; Tel.: +852-3400-8807
| |
Collapse
|
9
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|