1
|
Ahmed J, Ejaz M. Valorization of Jamun (Syzgium cumini) seed into flours and the influence of high-pressure treatment on their rheological, functional, and structural properties. Food Chem 2025; 480:143896. [PMID: 40120316 DOI: 10.1016/j.foodchem.2025.143896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
In this work, Jamun seed waste was converted into flour, and the resultant flour dough (flour/water =1:2) was subjected to high hydrostatic pressure treatment (300-600 MPa/15 min) to improve its functionality. After pressurization, particle size and total starch content of the JSF decreased (73.24-69.80 %), while an increase in the resistant starch (5.98-6.98 %) and radical scavenging activity (49.61-53.10 %) were recorded. The peak temperature of the doughs during gelatinization was detected at 84.2 °C, which remained unaffected by the treatment. Frequency sweep tests of the doughs displayed a solid-like and liquid-like behaviors in the lower and higher frequency ranges. FTIR and XRD demonstrated marginal changes in the corresponding peaks while SEM confirmed significant changes in granule shapes. These findings support high-pressure processing as an effective technique to improve the functionality of JSF, which can be incorporated into food formulations to enhance health benefits by retaining bioactive compounds.
Collapse
Affiliation(s)
- Jasim Ahmed
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait.
| | - Mohammad Ejaz
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
2
|
Sharma A, Kashyap S, Singh S. Exploring the advances in quinoa processing: A comprehensive review enhancing nutritional quality and health benefits along with industrial feasibility of quinoa. Food Res Int 2025; 206:116093. [PMID: 40058932 DOI: 10.1016/j.foodres.2025.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
The global dietary trend is shifting toward gluten-free crops with high nutritional value, driven by growing consumer awareness of environmental and health benefits of foods and food ingredients. Quinoa, a potential functional dietary ingredient, is rich in fiber, vitamins, and minerals. This review examines the impact of various processing methods, including thermal treatments (boiling, steaming, roasting), non-thermal techniques (germination, fermentation, microwave treatment, gamma irradiation, high hydrostatic pressure, and atmospheric pressure cold plasma), on the quality parameters of quinoa. Additionally, the health benefits of quinoa are explored in relation to human well-being. The review highlights recent advances in quinoa applications across industries, showcasing its versatility as an ingredient in functional foods and feeds. The effects of treatments vary widely, with each offering distinct advantages and limitations. Quinoa-based functional foods demonstrate the potential for developing health-promoting products, as quinoa's bioactive components exhibit antioxidant, antidiabetic, antihypertensive, anti-inflammatory, anticancer, and anti-obesity properties.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India.
| | - Shweta Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| |
Collapse
|
3
|
Halim A, Torley PJ, Farahnaky A, Majzoobi M. Investigating the Effects of Acid Hydrolysis on Physicochemical Properties of Quinoa and Faba Bean Starches as Compared to Cassava Starch. Foods 2024; 13:3885. [PMID: 39682957 DOI: 10.3390/foods13233885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the growing demand for high-quality food ingredients, starches from underutilised sources like quinoa and faba bean are gaining attention due to their unique properties and high tolerance to adverse environmental conditions. Acid hydrolysis is a well-established chemical method for producing modified starch with improved solubility, lower gelatinisation temperature, and reduced pasting viscosity. However, various outcomes can be achieved depending on the type of starch and modification conditions. This study comparatively investigated the effects of acid hydrolysis on the functional and physicochemical properties of emerging starches from quinoa and faba bean, with cassava starch serving as a reference from a leading source. The results demonstrated increased dietary fibre content across all three starches, with faba bean starch showing the most significant rise. Acid treatment also enhanced the crystallinity of the starches, with faba bean starch exhibiting the highest increase in relative crystallinity, which led to a shift towards higher temperatures in their thermal properties. Additionally, water solubility and oil adsorption capacity increased, while swelling power decreased following acid treatment. The acid treatment reduced the pasting properties of all samples, indicating that the modified starches were more resistant to heating and shearing in the rapid visco analyser. While quinoa starch gel remained soft after acid hydrolysis, the gel strength of cassava and faba bean starches improved significantly, making them suitable as plant-based gelling agents.
Collapse
Affiliation(s)
- Anthony Halim
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Peter J Torley
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Asgar Farahnaky
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mahsa Majzoobi
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
4
|
Zhu C, Lin Z, Jiang H, Wei F, Wu Y, Song L. Recent Advances in the Health Benefits of Phenolic Acids in Whole Grains and the Impact of Processing Techniques on Phenolic Acids: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24131-24157. [PMID: 39441722 DOI: 10.1021/acs.jafc.4c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Castro LMG, Caço AI, Pereira CF, Sousa SC, Brassesco ME, Machado M, Ramos ÓL, Alexandre EMC, Saraiva JA, Pintado M. Modification of Acorn Starch Structure and Properties by High Hydrostatic Pressure. Gels 2023; 9:757. [PMID: 37754438 PMCID: PMC10529620 DOI: 10.3390/gels9090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Despite being rich in starch, over half of acorn production is undervalued. High hydrostatic pressure was used to modify the properties of Q. pyrenaica (0.1 and 460 MPa for 20 min) and Q. robur (0.1 and 333 MPa for 17.4 min) acorn starches to obtain high-valued ingredients. Pressure significantly altered the span distribution and heterogeneity of the acorn starch granules depending on the species, but their morphology was unaffected. Pressurization increased the amylose/amylopectin ratio and damaged starch contents, but the effect was more prominent in Q. pyrenaica than in Q. robur. However, the polymorphism, relative crystallinity, gelatinization temperatures, and enthalpies were preserved. The pressure effect on the starch properties depended on the property and species. The solubility, swelling power, and acorn gels' resistance towards deformation for both species decreased after pressurization. For Q. pyrenaica starch, the in vitro digestibility increased, but the pseudoplastic behavior decreased after pressurization. No differences were seen for Q. robur. Regarding the commercial starch, acorn starches had lower gelatinization temperatures and enthalpies, lower in vitro digestibility, lower resistance towards deformation, superior pseudoplastic behavior, and overall higher solubility and swelling power until 80 °C. This encourages the usage of acorn starches as a new food ingredient.
Collapse
Affiliation(s)
- Luís M. G. Castro
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
- LAQV-REQUIMTE—Laboratório Associado, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (E.M.C.A.); (J.A.S.)
| | - Ana I. Caço
- Laboratório de Análises Térmicas, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carla F. Pereira
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| | - Sérgio C. Sousa
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| | - María E. Brassesco
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| | - Manuela Machado
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| | - Óscar L. Ramos
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| | - Elisabete M. C. Alexandre
- LAQV-REQUIMTE—Laboratório Associado, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (E.M.C.A.); (J.A.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE—Laboratório Associado, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (E.M.C.A.); (J.A.S.)
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (L.M.G.C.); (C.F.P.); (S.C.S.); (M.E.B.); (M.M.); (Ó.L.R.)
| |
Collapse
|
6
|
Mu H, Xue S, Sun Q, Shi J, Zhang D, Wang D, Wei J. Research Progress of Quinoa Seeds ( Chenopodium quinoa Wild.): Nutritional Components, Technological Treatment, and Application. Foods 2023; 12:2087. [PMID: 37238905 PMCID: PMC10217622 DOI: 10.3390/foods12102087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Quinoa (Chenopodium quinoa Wild.) is a pseudo-grain that belongs to the amaranth family and has gained attention due to its exceptional nutritional properties. Compared to other grains, quinoa has a higher protein content, a more balanced amino acid profile, unique starch features, higher levels of dietary fiber, and a variety of phytochemicals. In this review, the physicochemical and functional properties of the major nutritional components in quinoa are summarized and compared to those of other grains. Our review also highlights the technological approaches used to improve the quality of quinoa-based products. The challenges of formulating quinoa into food products are addressed, and strategies for overcoming these challenges through technological innovation are discussed. This review also provides examples of common applications of quinoa seeds. Overall, the review underscores the potential benefits of incorporating quinoa into the diet and the importance of developing innovative approaches to enhance the nutritional quality and functionality of quinoa-based products.
Collapse
Affiliation(s)
- Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qingrui Sun
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Danyang Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Deda Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianteng Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Rostamabadi H, Can Karaca A, Nowacka M, Mulla MZ, Al-attar H, Rathnakumar K, Gultekin Subasi B, Sehrawat R, Kheto A, Falsafi SR. How high hydrostatic pressure treatment modifies the physicochemical and nutritional attributes of polysaccharides? Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Zhang H, Feng X, Liu S, Ren F, Wang J. Effects of high hydrostatic pressure on nutritional composition and cooking quality of whole grains and legumes. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Effect of high pressure processing on structural and functional properties of canned aquafaba. Food Sci Biotechnol 2022; 31:1157-1167. [DOI: 10.1007/s10068-022-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/04/2022] Open
|
10
|
Zare L, Mollakhalili-Meybodi N, Fallahzadeh H, Arab M. Effect of atmospheric pressure cold plasma (ACP) treatment on the technological characteristics of quinoa flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|