1
|
Sundaresan S, Vijaikanth V. Recent advances in electrochemical detection of common azo dyes. Forensic Toxicol 2025; 43:1-21. [PMID: 39093537 DOI: 10.1007/s11419-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Food forensics is an emerging field and the initial part of this review showcases the toxic effects and the instrumental methods applied for the detection of the most commonly used azo dyes. Electrochemical detection has a lot of advantages and hence the significance of the most important techniques used in the electrochemical detection is discussed. The major part of this review highlights the surface modified electrodes, utilized for the detection of the most important azo dyes to achieve low detection limit (LOD). METHODS A thorough literature study was conducted using scopus, science direct and other scientific databases using specific keywords such as toxic azo dyes, electrochemical detection, modified electrodes, LOD etc. The recent references in this field have been included. RESULTS From the published literature, it is observed that with the growing interests in the field of electrochemical techniques, a lot of importance have been given in the area of modifying the working electrodes. The results unambiguously show that the modified electrodes outperform bare electrodes and offer a lower LOD value. CONCLUSION According to the literature reports it can be concluded that, compared to other detection methods, electrochemical techniques are much dependable and reproducible. The fabrication of the electrode material with the appropriate modifications is the main factor that influences the sensitivity. Electrochemical sensors can be designed to be more sensitive, more reliable, and less expensive. These sensors can be effectively used by toxicologists to detect trace amounts of harmful dyes in food samples.
Collapse
Affiliation(s)
- Sumi Sundaresan
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Vijendran Vijaikanth
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| |
Collapse
|
2
|
Ghaedamini H, Khalaf K, Kim DS, Tang Y. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2. Anal Biochem 2024; 689:115504. [PMID: 38458306 DOI: 10.1016/j.ab.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.
Collapse
Affiliation(s)
| | - Khalid Khalaf
- Department of Bioengineering, University of Toledo, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, USA
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, USA.
| |
Collapse
|
3
|
Mohamed AM, Fouad FH, Raouf Fayek G, El Sayed KM, Ahmed MN, Mahmoud RZ, El Nashar RM. Recent advances in electrochemical sensors based on nanomaterials for detection of red dyes in food products: A review. Food Chem 2024; 435:137656. [PMID: 37806207 DOI: 10.1016/j.foodchem.2023.137656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Red dyes as Allura Red (E129), Amaranth (E124), Ponceau 4R (E123), Erythrosine (E127) and Carmoisine (E122), are very popular food additives due to their stability, low cost, and minimal microbial contamination. Despite these advantages, their consumption may result in asthma, hyperactivity, carcinogenic effects, etc depending on the uptake and age. Therefore, the United States Food and Drug Administration (FDA) and European Food Safety Authority (EFSA) have managed the permissions of allowed daily intake (ADI) for consumption levels of these dyes to be 0.01-7.0 mg/kg to assure foodstuffs consumer's safety and avoid their adverse effects. Yet, many countries as Japan and USA have prohibited their use in food and drinks to reduce their possible health risks. Based on the above concentration ranges, highly sensitive and selective detection techniques are required, accordingly, the application of electrochemical sensors for the analysis of these dyes in food samples is very promising due to their superior sensitivity and selectivity, low cost and rapid response compared to traditional spectrophotometric or chromatographic methods. Also, they can be miniaturized, portable and require no complicated sampling or preparation procedures, besides being ecofriendly which allows their commercialization for public consumers in fast detection kits. In this review, the role of nanomaterials such as: carbon-based, transition metal oxides, metal organic frameworks, ionic liquids and others in enhancing the detection properties of modified electrochemical sensors for red dyes will be evaluated in terms of the type of nanomaterial applied, tested food samples and their impact on the evaluation of foodstuffs quality.
Collapse
Affiliation(s)
- Aya M Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - Fouad Hassan Fouad
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | - George Raouf Fayek
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Mohamed Nabil Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt
| | | | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 112631, Egypt.
| |
Collapse
|
4
|
Al Faysal A, Cetinkaya A, Kaya SI, Erdoğan T, Ozkan SA, Gölcü A. Development and Fabrication of a Molecularly Imprinted Polymer-Based Electroanalytical Sensor for the Determination of Acyclovir. ACS OMEGA 2024; 9:9564-9576. [PMID: 38434833 PMCID: PMC10905707 DOI: 10.1021/acsomega.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10-11 to 1 × 10-10 M, and the limit of detection and limit of quantification were 7.15 × 10-13 M and 2.38 × 10-12 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Ahmet Cetinkaya
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
- Graduate
School of Health Sciences, Ankara University, Ankara 06110, Turkey
| | - Sariye Irem Kaya
- Gulhane
Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara 06018, Turkey
| | - Taner Erdoğan
- Kocaeli
Vocational School, Department of Chemistry and Chemical Processing
Technologies, Kocaeli University, Kocaeli 41140, Turkey
| | - Sibel A. Ozkan
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| | - Ayşegül Gölcü
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Yuan L, Liu L, Mi Z, Chen M, Bai Y, Qin J, Feng F. A ratiometric sensor based on dual-emission carbon dots sensitive detection of amaranth. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123058. [PMID: 37393669 DOI: 10.1016/j.saa.2023.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Amaranth (AMA), a common food additive, is important to strictly control the content of food for the human body. In this paper, an innovative method based on intrinsic dual-emissive carbon dots (Y/B-CDs) was used to detect AMA. Y/B-CDs have two emission wavelengths at 416 and 544 nm with the excitation wavelength at 362 nm. The addition of AMA can rapidly quench the fluorescence of the two peaks with different degrees, and ratiometric detection can be achieved. Quantitative analysis showed two linear ranges of 0.1-20 μM and 20-80 μM, and detection limits are 42 and 33 nM, respectively. Moreover, good results were obtained for the detection of AMA in beverages and candy using Y/B-CDs. This suggests that the constructed sensor has the potential to detect AMA in real samples.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Zhi Mi
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jun Qin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China; School Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Taiyuan 030600, PR China.
| |
Collapse
|
6
|
Mohammadi SZ, Tajik S, Mousazadeh F, Baghadam-Narouei E, Garkani Nejad F. ZnO Hollow Quasi-Spheres Modified Screen-Printed Graphite Electrode for Determination of Carmoisine. MICROMACHINES 2023; 14:1433. [PMID: 37512744 PMCID: PMC10385384 DOI: 10.3390/mi14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Food colorants are important in food selection because they improve the gastronomic appeal of foods by improving their aesthetic appeal. However, after prolonged use, many colorants turn toxic and cause medical problems. A synthetic azo-class dye called carmoisine gives meals a red color. Therefore, the carmoisine determination in food samples is of great importance from the human health control. The current work was developed to synthesis ZnO hollow quasi-spheres (ZnO HQSs) to prepare a new electrochemical carmoisine sensor that is sensitive. Field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to analyze the properties of prepared ZnO HQSs. A screen-printed graphite electrode (SPGE) surface was modified with ZnO HQSs to prepare the ZnO HQSs-SPGE sensor. For carmoisine detection, the ZnO HQSs-SPGE demonstrated an appropriate response and notable electrocatalytic activities. The carmoisine electro-oxidation signal was significantly stronger on the ZnO HQSs-SPGE surface compared to the bare SPGE. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) have been utilized to investigate the suggested protocol. The DPV results revealed an extensive linear association between variable carmoisine concentrations and peak current that ranged from 0.08 to 190.0 µM, with a limit of detection (LOD) as narrow as 0.02 µM. The ZnO HQSs-SPGE's ability to detect carmoisine in real samples proved the sensor's practical application.
Collapse
Affiliation(s)
- Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Farideh Mousazadeh
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | | | - Fariba Garkani Nejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| |
Collapse
|
7
|
Georgescu-State R, van Staden JKF, Staden RISV, State RN. Electrochemical platform based on molecularly imprinted polymer with zinc oxide nanoparticles and multiwalled carbon nanotubes modified screen-printed carbon electrode for amaranth determination. Mikrochim Acta 2023; 190:229. [PMID: 37204551 DOI: 10.1007/s00604-023-05811-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
A novel electrochemical platform for amaranth determination has been developed using a rapid, easy, inexpensive, and portable molecularly imprinted polymer technique. The MIP platform was fabricated by electropolymerizing melamine as monomer in the presence of amaranth as template on the surface of ZnO-MWCNT/SPCE. Then, amaranth was completely eluted, leaving imprinted cavities in the polymeric film that could effectively recognize amaranth in solution. The electrochemical platform based on a molecularly imprinted polymelamine was analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Under optimum conditions, the developed MIP/ZnO-MWCNT/SPCE platform can be properly used for amaranth determination, with high sensitivity of 96.2 µA µM cm-2, two linear concentration ranges (0.01 to 1 µM and 1 to 1000 µM) and a low limit of detection of 0.003 µM. The anodic peak potential of amaranth was found to be 0.73 V. Additionally, the polymelamine MIP films specifically recognize amaranth molecules, making it possible to detect amaranth in a complex solution with high selectivity, excellent repeatability, reproducibility, and stability. The MIP/ZnO-MWCNT modified screen-printed carbon electrode was successfully applied to determine amaranth in pharmaceutical and water samples, with recovery values ranging from 99.7 to 102% and RSD% values less than 3.2%.
Collapse
Affiliation(s)
- Ramona Georgescu-State
- Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania
| | - Razvan Nicolae State
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei Street, 060021, Bucharest, Romania
| |
Collapse
|
8
|
Halloysite nanotube/black phosphorene nanohybrid modified screen-printed carbon electrode as an ultra-portable electrochemical sensing platform for smartphone-capable detection of maleic hydrazide with machine learning assistance. Food Chem 2023; 406:134967. [PMID: 36462357 DOI: 10.1016/j.foodchem.2022.134967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 12/02/2022]
Abstract
With the assistance of machine learning (ML), black phosphorene (BP) stabilized by silver nanoparticles (AgNPs) is used to modify halloysite nanotube (HNT) to obtain highly conductive nanomaterials, HNT/BP-AgNPs, which are morphologically characterized and elementally analyzed. Artificial neural network (ANN) and least squares support vector machine (LS-SVM) are adopted for the intelligent and rapid analysis of maleic hydrazide (MH). An ultra-portable electrochemical sensor bases on HNT/BP-AgNPs modifying screen-printed carbon electrode (SPCE), smartphone and mini-palm potentiostat for detection of MH in the linear range 0.7-55 μM with limit of detection (LOD) of 0.3 μM. For comparison, a traditional electrochemical sensor is fabricated by glass carbon electrode (GCE), desktop computer and large electrochemical potentiostat, and the linear range is 0.3-600 μM with low LOD of 0.1 μM. The ultra-portable electrochemical sensor combined with ML for the detection of MH in sweat potato and carrot gain satisfactory recoveries.
Collapse
|
9
|
Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Nigussie M, Kassa A, Guadie A, Mulu M, Lijalem T, Tefera M. Selective and sensitive determination of tinidazole in pharmaceuticals and biological matrix using poly(diphenylamine -4- sulfonic acid) modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
11
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Synthesis of NiRu-metal organic framework nanosheets: as active catalyst for the fabrication of rapid and simple electrochemical sensor for the determination of sudan I in presence of bisphenol A. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Electrospun ruthenium oxide nanofibers/poly(sulfosalicylic acid) nanocomposite as an highly sensitive electrochemical platform for determination of sunset yellow in food samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Self-supported loofah-like Co(OH)F@NiMn-LDH hierarchical core-shell nanosheet arrays as efficient electrocatalyst for hydrazine sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Akbari Javar H, Mahmoudi-Moghaddam H, Rajabizadeh A, Hamzeh S, Akbari E. Development of an electrochemical sensor based on Ce3+ and CuO for the determination of amaranth in soft drinks. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Ganesh PS, Teradale AB, Kim SY, Ko HU, Ebenso EE. Electrochemical sensing of anti-inflammatory drug mesalazine in pharmaceutical samples at polymerized-congo red modified carbon paste electrode. Chem Phys Lett 2022; 806:140043. [DOI: 10.1016/j.cplett.2022.140043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
A glassy carbon electrode modulated with Poly (Naphthol green B) for simultaneous electroanalysis of serotonin and Epinephrine in presence of l-tryptophan. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Sun R, Lv R, Li Y, Du T, Chen L, Zhang Y, Zhang X, Zhang L, Ma H, Sun H, Qi Y. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Anitta S, Sekar C. HAP-TiO2 nanocomposites based electrochemical sensor for selective and simultaneous detection of para-aminohippuric acid and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Mehmandoust M, Khoshnavaz Y, Karimi F, Çakar S, Özacar M, Erk N. A novel 2-dimensional nanocomposite as a mediator for the determination of doxorubicin in biological samples. ENVIRONMENTAL RESEARCH 2022; 213:113590. [PMID: 35690088 DOI: 10.1016/j.envres.2022.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
In our study, the electrochemical properties of a novel activated nanocomposite were studied with 2-dimensional graphitic carbon nitride/sodium dodecyl sulfate/graphene nanoplatelets on the screen-printed electrodes (2D-g-C3N4/SDS/GNPs/SPE). The as-fabricated sensor exhibited excellent electrochemical performance, including wide dynamic ranges from 0.03 to 1.0 and 1.0-13.5 μM with a low limit of detection (LOD) of 10.0 nM. The fabricated 2D-g-C3N4/SDS/GNPs/SPE electrode exhibited high sensitivity, stability, good reproducibility, reusability, and repeatability towards DOX sensing. It can be utilized in real samples, including human plasma and urine, with excellent correlations and coefficients of variation below 6.0%. Therefore, this study presents potential application values in sensing DOX with efficient performance. Finally, the accuracy was attested by comparison with high-performance liquid chromatography (HPLC) as the reference method, signalizing a good agreement.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Yasamin Khoshnavaz
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Soner Çakar
- Zonguldak Bülent Ecevit University, Science and Arts Faculty, Chemistry Department, Zonguldak, 67100, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Faculty of Science & Arts, Department of Chemistry, 54187, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| |
Collapse
|
20
|
Voltammetric analysis of serotonin and epinephrine in the presence of guanine and adenine at Bismarck brown R amplified pencil graphite electrode. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Mahobiya S, Balayan S, Chauhan N, Khanuja M, Kuchhal NK, Islam SS, Jain U. Tungsten Disulfide Decorated Screen-Printed Electrodes for Sensing of Glycated Hemoglobin. ACS OMEGA 2022; 7:34676-34684. [PMID: 36188317 PMCID: PMC9520739 DOI: 10.1021/acsomega.2c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a global menace, and its severity results in various disorders including cardiovascular, retinopathy, neuropathy, and nephropathy. Recently, diabetic conditions are diagnosed through the level of glycated hemoglobin. The level of glycated hemoglobin is determined with enzymatic methodology. Although the system is sensitive, it has various restrictions such as long processing times, expensive equipment required for testing, and complex steps involved in sample preparation. These limitations are a hindrance to faster results. The limitations of the developed methods can be eliminated through biosensors. In this work, an electrochemical platform was fabricated that facilitates the identification of glycated hemoglobin protein in diabetic patients. The working electrode on the integrated circuit was modified with molecularly imprinted polymer decorated with tungsten disulfide nanoparticles to enhance its analytical properties. The analytical properties of the biosensor were studied using electrochemical techniques. The obtained detection limit of the nanoelectronic sensor was 0.01 pM. The calculated sensitivity of the biosensor was observed to be 0.27 μA/pM. Also, the sensor promises to operate in a dynamic working concentration range and provide instant results.
Collapse
Affiliation(s)
- Sunil
Kumar Mahobiya
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Sapna Balayan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Manika Khanuja
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | | | - S. S. Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Utkarsh Jain
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
22
|
Amali RKA, Lim HN, Ibrahim I, Zainal Z, Ahmad SAA. A copper-based metal-organic framework decorated with electrodeposited Fe 2O 3 nanoparticles for electrochemical nitrite sensing. Mikrochim Acta 2022; 189:356. [PMID: 36038741 DOI: 10.1007/s00604-022-05450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
An amperometric nitrite sensor is reported based on a screen-printed carbon electrode (SPCE) modified with copper(II)-benzene-1,4-dicarboxylate (Cu-BDC) frameworks and iron(III) oxide nanoparticles (Fe2O3 NPs). First, copper(I) oxide (Cu2O) nanocubes were synthesized, followed by a solvothermal reaction between Cu2O and H2BDC to form square plate-like Cu-BDC frameworks. Then, Fe2O3 NPs were electrodeposited on Cu-BDC frameworks using a potentiostatic method. The Fe2O3@Cu-BDC nanocomposite benefits from high conductivity and large active surface area, offering excellent electrocatalytic activity for nitrite oxidation. Under optimal amperometric conditions (0.55 V vs. Ag/AgCl), the sensor has a linear range of 1 to 2000 µM with a detection limit of 0.074 µM (S/N = 3) and sensitivity of 220.59 µA mM-1 cm-2. The sensor also provides good selectivity and reproducibility (RSD = 1.91%, n = 5). Furthermore, the sensor exhibits long-term stability, retaining 91.4% of its original current after 4 weeks of storage at room temperature. Finally, assessing nitrite in tap and mineral water samples revealed that the Fe2O3@Cu-BDC/SPCE has a promising prospect in amperometric nitrite detection.
Collapse
Affiliation(s)
- R K A Amali
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - H N Lim
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - I Ibrahim
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Z Zainal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - S A A Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Sensitive and stable detection of deoxynivalenol based on electrochemiluminescence aptasensor enhanced by 0D/2D homojunction effect in food analysis. Food Chem 2022; 403:134397. [DOI: 10.1016/j.foodchem.2022.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
|
24
|
4-ethyphenol detection in wine by fullerene modified screen-printed carbon electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Rawat R, Roy S, Goswami T, Mathur A. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16. Diagnostics (Basel) 2022; 12:diagnostics12092087. [PMID: 36140489 PMCID: PMC9498135 DOI: 10.3390/diagnostics12092087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human Papilloma Virus 16 (HPV 16) is the well-known causative species responsible for triggering cervical cancer. When left undiagnosed and untreated, this disease leads to life-threatening events among the female populace, especially in developing nations where healthcare resources are already being stretched to their limits. Considering various drawbacks of conventional techniques for diagnosing this highly malignant cancer, it becomes imperative to develop miniaturized biosensing platforms which can aid in early detection of cervical cancer for enhanced patient outcomes. The current study reports on the development of an electrochemical biosensor based on reduced graphene oxide (rGO)/DNA hybrid modified flexible carbon screen-printed electrode (CSPE) for the detection of HPV 16. The carbon-coated SPEs were initially coated with rGO followed by probe DNA (PDNA) immobilization. The nanostructure characterization was performed using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the electrochemical characterization of the nano-biohybrid sensor surface. The optimization studies and analytical performance were assessed using differential pulse voltammetry (DPV), eventually exhibiting a limit of detection (LoD) ~2 pM. The developed sensor was found to be selective solely to HPV 16 target DNA and exhibited a shelf life of 1 month. The performance of the developed flexible sensor further exhibited a promising response in spiked serum samples, which validates its application in future point-of-care scenarios.
Collapse
Affiliation(s)
- Reema Rawat
- Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Souradeep Roy
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tapas Goswami
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| |
Collapse
|
26
|
Ramakrishnan K, Gayathri V, Aravinthkumar K, Ramachandran K, Ajitha B, Rameshbabu M, Sasiflorence S, S.Karazhanov, Praba K, Raja Mohan C. TiO2/CeO2 Core/Shell Nanostructures for Photocatalytic and Photo Electrochemical Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Shahinfard H, Shabani-Nooshabadi M, Reisi-Vanani A, Ansarinejad H. A novel platform based on CoMn 2O 4-rGO/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode for voltammetric detection of pethidine in the presence morphine and olanzapine. CHEMOSPHERE 2022; 301:134710. [PMID: 35487358 DOI: 10.1016/j.chemosphere.2022.134710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The present work focuses on the development of a new electrochemical platform based on CoMn2O4-rGO/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode (CoMn2O4-rGO/IL/CPE) for electrochemical determination of pethidine in the presence of biological species. For the first time, the electrooxidation mechanism of pethidine in presences of morphine and olanzapine is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) technologies. The as-synthesized CoMn2O4-rGO nanocomposites are characterized by physicochemical measurements such as X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR). The obtained results illustrated synergistic interactions between rGO and CoMn2O4 structures. Also, to investigate the electrode charge-transfer resistances, electrochemical features of the resulting nanocomposites are studied via electrochemical impedance spectroscopy (EIS) analysis. Based on the result, three segmented linear ranges are observed over the range 0.08-900 μM and detection limit of 0.024 μM. Over the 10.0-40.0 μM ranges of pethidine in phosphate buffer solution (PBS-pH 7.0), suitable diffusion coefficient of 5.67 × 10-7 cm2 s-1 is evaluated by chronoamperometry technique (CHA). Finally, the CoMn2O4-rGO/IL/CPE with high sensitivity, selectivity and repeatability is successfully used for determination of pethidine in real sample and drug formulation.
Collapse
Affiliation(s)
- Hamed Shahinfard
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Mehdi Shabani-Nooshabadi
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Adel Reisi-Vanani
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Hanieh Ansarinejad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
28
|
Hollow Hierarchical Cu-BTC as Nanocarriers to Immobilize Lipase for Electrochemical Biosensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
29
|
Aloe barbadensis Mill leaf gel assisted combustion synthesized ZnO:Ni3+: Electrochemical sensor for Ascorbic Acid detection and Photocatalysis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Kaewjua K, Siangproh W. A novel tyramine sensing-based polymeric L-histidine film-coated screen-printed graphene electrode: Capability for practical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Buledi JA, Solangi AR, Hyder A, Khand NH, Memon SA, Mallah A, Mahar N, Dragoi EN, Show P, Behzadpour M, Karimi-Maleh H. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food Chem Toxicol 2022; 165:113177. [DOI: 10.1016/j.fct.2022.113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023]
|
32
|
Poly (Bromocresol purple) incorporated pencil graphite electrode for concurrent determination of serotonin and levodopa in presence of L-Tryptophan: A voltammetric study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
A novel electroanalytical biosensor based on ZIF‐8/acetylcholinesterase bio‐nanohybrids for early management of Hirschsprung Disease. ELECTROANAL 2022. [DOI: 10.1002/elan.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Musarraf Hussain M, Asiri AM, Hasnat MA, Ben Aoun S, Rahman MM. Detection of Acetylcholine in an Enzyme‐Free System Based on a GCE/V2O5 NRs/BPM Modified Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences Jagannath University Dhaka 1100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science Taibah University PO Box 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
35
|
Comparison of the modification of graphite electrodes with poly(4-aminobenzoic acid) and poly(4-hydroxyphenylacetic acid) for determination of Pb(II). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation. Food Chem Toxicol 2022; 164:113080. [DOI: 10.1016/j.fct.2022.113080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/27/2022]
|
37
|
Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Jahani PM, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 2022; 164:112961. [PMID: 35395340 DOI: 10.1016/j.fct.2022.112961] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/24/2023]
Abstract
Azo dyes as widely applied food colorants are popular for their stability and affordability. On the other hand, many of these dyes can have harmful impacts on living organs, which underscores the need to control the content of this group of dyes in food. Among the various analytical approaches for detecting the azo dyes, special attention has been paid to electro-analytical techniques for reasons such as admirable sensitivity, excellent selectivity, reproducibility, miniaturization, green nature, low cost, less time to prepare and detect of specimens and the ability to modify the electrode. Satisfactory results have been obtained so far for carbon-based nanomaterials in the fabrication of electrochemical sensing systems in detecting the levels of these materials in various specimens. The purpose of this review article is to investigate carbon nanomaterial-supported techniques for electrochemical sensing systems on the analysis of azo dyes in food samples in terms of carbon nanomaterials used, like carbon nanotubes (CNT) and grapheme (Gr).
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, 1775, Arica, Chile
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| |
Collapse
|
38
|
Altuner EE, Ozalp VC, Yilmaz MD, Bekmezci M, Sen F. High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox). CHEMOSPHERE 2022; 292:133429. [PMID: 34973252 DOI: 10.1016/j.chemosphere.2021.133429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, analytical studies of Chitosan-Cobalt(II) (CTS-Co(II)) nanoparticles (CTS - Co NPs) by mimicking horseradish peroxidase (HRP) were evaluated. In the applications, it was observed that CTS-Co NPs 3,3' 5,5' tetramethylbenzidine (TMB) oxidized in the presence of hydrogen peroxide (H2O2). The required CTS-Co NPs were synthesized at 50 °C in 30 min and characterized using Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photon spectroscopy (XPS) was done. CTS-Co NPs were studied to develop a selective TMB biosensor on TMB(ox) substrate. The synthesized CTS-Co NPs formed a catalytic reaction with 30% 0.2 mM H2O2 on 0.2 M TMB substrate. After the catalytic reaction, sensitive signals were obtained from the desired biosensor. Electrochemical measurements were taken as low limit of 10 mg and a high limit of 20 mg for the determination of CTS-Co NPs to TMB(ox). In the microplate study; The sensors were applied on 1.5 μg and 3 μg CTS-Co NPs TMB(ox) substrate, respectively. CTS- Co NPs; for TMB(ox) determination, optical density (OD) measurement was taken as a low limit of 1.5 μg and a high limit of 3 μg. Electrochemical applications of particles and microplate reader results were compared with horseradish peroxidase (HRP) enzyme for sensor properties. According to the data obtained, it was observed that it behaved similarly to the CTS-Co NPs peroxidase enzyme. This work presents innovations for nanoparticle extraction and sensor study from chitosan and other naturally sourced polymers.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkey.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey.
| |
Collapse
|
39
|
Hyder A, Buledi JA, Nawaz M, Rajpar DB, Shah ZUH, Orooji Y, Yola ML, Karimi-Maleh H, Lin H, Solangi AR. Identification of heavy metal ions from aqueous environment through gold, Silver and Copper Nanoparticles: An excellent colorimetric approach. ENVIRONMENTAL RESEARCH 2022; 205:112475. [PMID: 34863692 DOI: 10.1016/j.envres.2021.112475] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Muhammad Nawaz
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Dhani B Rajpar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| |
Collapse
|
40
|
Mao Z, Zhu H, Peng X, Chen J, Chen Q, Chen X, Hu X, Chen H. In situ vertical alignment of 2D MoS 2 layers on GO film: enhanced electrochemical properties for PD-L1 sensing. Mikrochim Acta 2022; 189:155. [PMID: 35347433 DOI: 10.1007/s00604-022-05269-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
There is an urgent need for a flexible and simple programmed cell death ligand 1 (PD-L1) dynamic measurement method enabling real-time monitoring of cancer progression and assessment of immunotherapy efficacy. In the current study, we show facile in situ synthesis of vertical alignment two-dimensional molybdenum disulfide (2D MoS2) layers on graphene-oxide-modified ITO (MoS2┴GO-ITO) using a hydrothermal approach and demonstrate the importance of the alignment of 2D in achieving high-probe capturing, enhanced electrochemical properties and target selectivity during sensing. After modification of designed PD-L1 binding peptides on the MoS2┴GO-ITO, a sensitive PD-L1 electrochemical sensor was designed using vertical alignment MoS2 to capture more probes for PD-L1 recognition and excellent in plane electron transport to accelerate electrochemical signals. The fabricated electrochemical sensor could sensitively determine PD-L1 in a wide linear range of 25-500 ng/mL and exhibit desirable accuracy and reliability in clinical samples application. This simple and sensitive method is likely to investigate further research into the exploration of the perpendicular alignment of 2D surfaces for diverse applications.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinsheng Peng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - XiaoBing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
41
|
Alizadeh M, Demir E, Aydogdu N, Zare N, Karimi F, Kandomal SM, Rokni H, Ghasemi Y. Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid food colors. Food Chem Toxicol 2022; 163:112929. [PMID: 35307455 DOI: 10.1016/j.fct.2022.112929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
This study provides a comprehensive review of the latest developments in the electrochemical impressions of the important dyestuffs including amaranth and carminic acid. Food colors are organic substances that have important effects on human health and food safety. While these substances do not pose a problem when used in the daily intake (ADI) amounts, they harm human health when consumed excessively. Amaranth and carminic acid are synthetic and natural food colors ingredients, respectively. Analysis of these substances in food, pharmaceutical, cosmetic and textile samples is extremely important because of their genotoxicity, cytostatic and cytotoxic effects. Electroanalytical methods, which have great advantages over traditional analytical methods, shed light on the scientific world. Electrochemical monitoring modules, which are fast, simple, accurate, reliable, and highly selective, are promising for the determination of both substances. Until now, amaranth and carminic acid food determinations have been carried out successfully with electrochemical monitoring techniques in many numbers in the literature. Voltammetric techniques are the most widely used among these electroanalytical methods. In particular, square wave and differential pulse voltammetric techniques, which have extraordinary properties, have been heavily preferred. Limits of detection (LOD) comparable to the standard analytical method have been achieved using these methods, which have very quick analysis durations, high precision and accuracy, do not require long preprocessing, and have great selectivity. In addition, more sensitive and selective analyses of amaranth and carminic acid in natural samples were carried out with numerous indicator electrodes. The merits of powerful electrochemical monitoring studies for the determination of both food colors during the last decade are presented in this study. Moreover, parameters such as analytical applications, detection limits, electrochemical methods, selectivity, working electrodes, and working ranges are summarized in detail.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - S Masoud Kandomal
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Determination of Lorazepam Using the Electrocatalytic Effect of NiO/SWCNTs Modified Carbon Paste Electrode as a Powerful Sensor. Top Catal 2022. [DOI: 10.1007/s11244-022-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. SUSTAINABILITY 2022. [DOI: 10.3390/su14042169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A high performance and fast response sensor was fabricated as a monitoring system for the determination of butylated hydroxyanisole (BHA) in food and wastewater samples. In this regard, a carbon paste electrode (CPE) that was amplified with platinum-decorated single wall carbon nanotubes (Pt/SWCNTs) and 1-Butyl-3-methylimidazolium chloride ([C4mim][Cl]) was investigated as a new electroanalytical sensor for the monitoring of BHA in aqueous solution. The [C4mim][Cl]/Pt/SWCNTs/CPE offered an excellent catalytic activity on oxidation signal of BHA and enhanced its oxidation current about 5.51 times. In the final step, the standard addition results confirmed the powerful ability of [C4mim][Cl]/Pt/SWCNTs/CPE to the monitoring of BHA in different water and food samples with acceptable recovery data.
Collapse
|
44
|
Bavandpour R, Rajabi M, Asghari A. Electrochemical determination of epirubicin in the presence of topotecan as essential anti-cancer compounds using paste electrode amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent. CHEMOSPHERE 2022; 289:133060. [PMID: 34838830 DOI: 10.1016/j.chemosphere.2021.133060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Epirubicin (EP) and topotecan (TP) are two major anti-cancer compounds for the treatment of breast cancer with serious side effects. Hence herein, a carbon paste electrode (CPE) amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent (CPE/DES/Pt-SWCNT) were proposed as an analytical tool for the monitoring of EP in the presence of TP in the real samples. Amplification of sensor was improve EP oxidation signal about 2.73 times. Under the optimized conditions, EP determined by using differential pulse voltammetry (DPV) technique with linear dynamic range of 0.001-500 μM with limit of detection (LOD) of 0.8 nM. The CPE/DES/Pt-SWCNT offered influential ability for monitoring of EP in injection and dextrose saline samples with a recovery range of 97.4%-104.9%.
Collapse
Affiliation(s)
- Razieh Bavandpour
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| |
Collapse
|
45
|
Tavana T, Rezvani AR. Monitoring of atropine anticholinergic drug using voltammetric sensor amplified with NiO@Pt/SWCNTs and ionic liquid. CHEMOSPHERE 2022; 289:133114. [PMID: 34861254 DOI: 10.1016/j.chemosphere.2021.133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In this work, the synergic impact of 1-ethyl-3-methylimidazolium methyl sulfate (EMMS) and NiO doped Pt decorated SWCNTs (NiO@Pt/SWCNTs) in carbon paste matrix was examined as an analytical tool for investigating electrochemical behavior of atropine. The voltammetric results revealed that NiO@Pt/SWCNTs/EMMS/CPE exhibited an excellent electrocatalytic activity towards redox reaction of atropine in aqueous solution pH = 10.0. The NiO@Pt/SWCNTs/EMMS/CPE offered the best electro-analytical conditions for monitoring of atropine in the concentration range of 4.0 nM-220 μM with an increase in oxidation current about 5.93 times. On the other hand, NiO@Pt/SWCNTs/EMMS/CPE displayed a long time stability (about 60 days) for monitoring of atropine. The ability of NiO@Pt/SWCNTs/EMMS/CPE as an electroanalytical tool for monitoring of atropine was investigated, and the recovery range was detected as to be 97.6%-104.25% for this goal.
Collapse
Affiliation(s)
- Toktam Tavana
- Department of Chemistry, University of Sistan and Baluchestan, Iran.
| | - Ali Reza Rezvani
- Department of Chemistry, University of Sistan and Baluchestan, Iran.
| |
Collapse
|
46
|
Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01270-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Moghadam FH, Taher MA, Agheli H. Electroanalytical Monitoring of Glutathione in Biological Fluids Using Novel Pt/SWCNTs-Ionic Liquid Amplified Sensor. Top Catal 2022. [DOI: 10.1007/s11244-021-01509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Tabrizi M, Shahidi SA, Chekin F, Ghorbani-HasanSaraei A, Raeisi SN. Reduce Graphene Oxide/Fe3O4 Nanocomposite Biosynthesized by Sour Lemon Peel; Using as Electro-catalyst for Fabrication of Vanillin Electrochemical Sensor in Food Products Analysis and Anticancer Activity. Top Catal 2022. [DOI: 10.1007/s11244-021-01541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Mehmandoust M, Erk N, Karaman O, Karimi F, Bijad M, Karaman C. Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem Toxicol 2021; 158:112698. [PMID: 34838678 DOI: 10.1016/j.fct.2021.112698] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
In this work, an electrochemical sensor for the azo dye compound tartrazine (TRT) determination was proposed. A screen-printed carbon electrode (SPCE) was modified by depositing three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles (Pt/CQDs@rGO/SPCE). The resulting amount of TRT was observed by differential pulse voltammetry. Under optimal conditions, the sensor exhibited two wide linearities ranging from 0.01 to 1.57 μM and 1.57-9.3 μM with the reliability coefficient of determination of 0.991 and 0.992, respectively. The detection limit (LOD) was also estimated to be 7.93 nM. Moreover, the Pt/CQDs@rGO/SPCE suggested high selectivity in the presence of several interfering agents and azo dye compounds that have a similar structure. Additionally, the Pt/CQDs@rGO/SPCE revealed superior recovery values of about 96.5-101.6% for candy, 99.7-103.5% for soft drinks, 96.0-101.2% for jelly powder, and 98.0-103.0% for water samples. Furthermore, the fabricated sensor exhibits excellent selectivity, stability, reproducibility, and repeatability, indicating a great perspective in the monitoring of TRT. Therefore, it can be speculated that the proposed electrode could be effectively applied to determine TRT in food samples.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Majede Bijad
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| |
Collapse
|
50
|
Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Mikrochim Acta 2021; 188:434. [PMID: 34837114 PMCID: PMC8626286 DOI: 10.1007/s00604-021-05107-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core–shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12–4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| | - Yasamin Khoshnavaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Faculty of Science & Arts, Tokat Gaziosmanpaşa University, Tr-60250, Tokat, Turkey
- Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Materials, Dhahran, 31261, Saudi Arabia
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|