1
|
Jin J, Deng X, Zhou J, Deng Y, Pan N, Luo Y, Muhammed A. The mechanisms of inactivation of polyphenol oxidase in fresh-cut Agaricus bisporus by dual-frequency ultrasound combined with electrolytic water. ULTRASONICS SONOCHEMISTRY 2025; 114:107277. [PMID: 39978128 PMCID: PMC11880718 DOI: 10.1016/j.ultsonch.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Fresh-cut mushrooms are gaining popularity worldwide. However, their shelf life is limited because of enzymatic browning catalyzed by polyphenol oxidase (PPO), which leads to quality loss. The effects of different treatments (dual-frequency ultrasound (DFU), electrolytic water (EW), dual-frequency ultrasound combined with electrolytic water (DFU-EW)) on the molecular structure (Fourier infrared spectroscopy, X-ray diffraction, fluorescence spectroscopy, surface hydrophobicity, etc.), thermal properties, gene expression of PPO, and storage characteristics of mushrooms were investigated. The results showed that the DFU-EW decreased the relative contents of α-helix by 6.3 % and β-turns by 11.2 %, while increasing the contents of random coil and β-sheet by13.3 % and 4.7 %, respectively, compared to the control. The XRD analysis showed that the crystallinity of PPO was 7% higher than the control, while the fluorescence spectroscopy and surface hydrophobicity of PPO decreased from 921.7 (a.u) and 1154.5 to 393.5 (a.u) and 506.5, respectively. The DFU-EW treatment changed both the secondary and tertiary structures of PPO. The TGA analysis indicated that the thermal decomposition temperature decreased from the control 351.4 ℃ to 336.9 ℃. The gene expression level of AbPPO3 and AbPPO4 lowered. A 7-day storage period showed that DFU-EW inhibited the degree of browning, maintained the firmness of mushrooms, and stabilized the relative activity of PPO at 60% on average. Taken together, the DFU-EW treatment can effectively inactivate the PPO activity in fresh-cut mushrooms, thereby extending their shelf life, and this method provides a new insight to improve the quality of fresh-cut products.
Collapse
Affiliation(s)
- Jian Jin
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| | - Xiaying Deng
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiemin Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yangyang Deng
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Nanlin Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yilong Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Awwal Muhammed
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| |
Collapse
|
2
|
Feng M, Zhang M, Adhikari B, Chang L. Novel strategies for enhancing quality stability of edible flower during processing using efficient physical fields: A review. Food Chem 2024; 448:139077. [PMID: 38518445 DOI: 10.1016/j.foodchem.2024.139077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Edible flowers are an exotic part of the human diet due to their distinct sensorial properties and health benefits. Due to consumers demand edible flowers and their products with natural freshness and high nutritional value, there is increasing research on the application of green and efficient edible flower processing technologies. This paper reviews the application of a number of physical fields including ultrasound, microwave, infrared, ultraviolet, ionizing radiation, pulse electric field, high hydrostatic pressure, and reduced pressure aiming to improve the processing and product quality of edible flowers. The mechanism of action, influencing factors, and status on application of each physical energy field are critically evaluated. In addition, the advantages and disadvantages of each of these energy fields are evaluated, and trends on their future prospects are highlighted. Future research is expected to focus on gaining greater understanding of the mechanism action of physical field-based technologies when applied to processing of edible flowers and to provide the basis for broaden the application of physical field-based technologies in industrial realm.
Collapse
Affiliation(s)
- Min Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Lu Chang
- Shandong Huamei Biology Science & Technology Co, Pingyin, China
| |
Collapse
|
3
|
Rathnakumar K, Kalaivendan RGT, Eazhumalai G, Raja Charles AP, Verma P, Rustagi S, Bharti S, Kothakota A, Siddiqui SA, Manuel Lorenzo J, Pandiselvam R. Applications of ultrasonication on food enzyme inactivation- recent review report (2017-2022). ULTRASONICS SONOCHEMISTRY 2023; 96:106407. [PMID: 37121169 PMCID: PMC10173006 DOI: 10.1016/j.ultsonch.2023.106407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Ultrasound processing has been widely applied in food sector for various applications such as decontamination and structural and functional components modifications in food. Enzymes are proteinaceous in nature and are widely used due to its catalytic activity. To mitigate the undesirable effects caused by the enzymes various technologies have been utilized to inactive the enzymes and improve the enzyme efficiency. Ultrasound is an emerging technology that produces acoustic waves which causes rapid formation and collapse of bubbles. It has the capacity to break the hydrogen bonds and interact with the polypeptide chains due to Vander Waals forces leading to the alteration of the secondary and tertiary structure of the enzymes thereby leading to loss in their biological activity. US effectively inactivates various dairy-related enzymes, including alkaline phosphatase (ALP), lactoperoxidase (LPO), and γ-glutamyl transpeptidase (GGTP) with increased US intensity and time without affecting the natural dairy flavors. The review also demonstrates that inactivation of enzymes presents in fruit and vegetables such as polyphenol oxidase (PPO), polygalacturonase (PG), Pectin methyl esterase (PME), and peroxidase. The presence of the enzymes causes detrimental effects causes off-flavors, off-colors, cloudiness, reduction in viscosity of juices, therefore the formation of high-energy free molecules during sonication affects the catalytic function of enzymes and thereby causing inactivation. Therefore this manuscript elucidates the recent advances made in the inactivation of common, enzymes infruits, vegetables and dairy products by the application of ultrasound and also explains the enzyme inactivation kinetics associated. Further this manuscript also discusses the ultrasound with other combined technologies, mechanisms, and its effects on the enzyme inactivation.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin, Madison 53707, WI, the United States of America
| | - Ranjitha Gracy T Kalaivendan
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Gunaseelan Eazhumalai
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Anto Pradeep Raja Charles
- Food Ingredients and Biopolymer Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, the United States of America
| | - Pratishtha Verma
- Department of Dairy and Food Science, South Dakota State University, Brookings - 57007, SD, the United States of America
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sweety Bharti
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India.
| |
Collapse
|
4
|
Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023; 28:molecules28052158. [PMID: 36903403 PMCID: PMC10004730 DOI: 10.3390/molecules28052158] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Polyphenol oxidase (PPO) is present in most higher plants, but also in animals and fungi. PPO in plants had been summarized several years ago. However, recent advances in studies of PPO in plants are lacking. This review concludes new researches on PPO distribution, structure, molecular weights, optimal temperature, pH, and substrates. And, the transformation of PPO from latent to active state was also discussed. This state shift is a vital reason for elevating PPO activity, but the activation mechanism in plants has not been elucidated. PPO has an important role in plant stress resistance and physiological metabolism. However, the enzymatic browning reaction induced by PPO is a major problem in the production, processing, and storage of fruits and vegetables. Meanwhile, we summarized various new methods that had been invented to decrease enzymatic browning by inhibiting PPO activity. In addition, our manuscript included information on several important biological functions and the transcriptional regulation of PPO in plants. Furthermore, we also prospect some future research areas of PPO and hope they will be useful for future research in plants.
Collapse
|
5
|
Xu B, Feng M, Chitrakar B, Cheng J, Wei B, Wang B, Zhou C, Ma H. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Manzoor MF, Hussain A, Goksen G, Ali M, Khalil AA, Zeng XA, Jambrak AR, Lorenzo JM. Probing the impact of sustainable emerging sonication and DBD plasma technologies on the quality of wheat sprouts juice. ULTRASONICS SONOCHEMISTRY 2023; 92:106257. [PMID: 36508892 PMCID: PMC9763752 DOI: 10.1016/j.ultsonch.2022.106257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 06/05/2023]
Abstract
Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Abid Hussain
- Karakoram International University, Faculty of Life Science, Department of Agriculture and Food Technology, Gilgit-Baltistan, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, 54000, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
7
|
Feng M, Chitrakar B, Chen J, Islam MN, Wei B, Wang B, Zhou C, Ma H, Xu B. Effect of Multi-Mode Thermosonication on the Microbial Inhibition and Quality Retention of Strawberry Clear Juice during Storage at Varied Temperatures. Foods 2022; 11:foods11172593. [PMID: 36076780 PMCID: PMC9455229 DOI: 10.3390/foods11172593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Strawberry juice, which is rich in nutrients and charming flavor, is favored by consumers. To explore whether multi-mode thermosonication (MTS) can ensure the quality stability of strawberry clear juice (SCJ) during storage, the effects of microbial inhibition, enzyme activity, and physicochemical properties of SCJ pretreated by MTS were evaluated during storage at 4, 25, and 37 °C in comparison with thermal pretreatment (TP) at 90 °C for 1 min. The MTS, including dual-frequency energy-gathered ultrasound pretreatment (DEUP) and flat sweep-frequency dispersive ultrasound pretreatment (FSDUP), were conducted at 60 °C for 5 and 15 min, respectively. Results showed that the total phenols, flavonoids, anthocyanins, ascorbic acid, and DPPH free radical scavenging ability of SCJ decreased during the storage period. The control sample of SCJ was able to sage for only 7 days at 4 °C based on the microbiological quality, while the FSDUP and DEUP group extended the storage period up to 21 and 14 days, respectively. The polyphenol oxidase in SCJ pretreated by MTS did not reactivate during the storage period. The MTS remarkably (p < 0.05) reduced the color deterioration, browning degree, and nutrient degradation during the storage period. Moreover, the FSDUP group exhibited the maximum shelf life with a minimum loss of quality, demonstrating that it was the most suitable processing method for obtaining high-quality SCJ. It can be concluded that the MTS has the potential to inhibit enzymatic browning, inactivating microorganisms, preserve original quality attributes, and prolong the shelf life of SCJ.
Collapse
Affiliation(s)
- Min Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jianan Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Fax: +86-(0)511-88780201
| |
Collapse
|
8
|
Xu B, Sylvain Tiliwa E, Wei B, Wang B, Hu Y, Zhang L, Mujumdar AS, Zhou C, Ma H. Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. ULTRASONICS SONOCHEMISTRY 2022; 88:106083. [PMID: 35779429 PMCID: PMC9254114 DOI: 10.1016/j.ultsonch.2022.106083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
This study evaluated the effect of mono-frequency ultrasound (MFU, 20 kHz), dual-frequency ultrasound (DFU, 20/40 kHz), and tri-frequency ultrasound (TFU, 20/40/60 kHz) on mass transfer, drying kinetics, and quality properties of infrared-dried pineapple slices. Pretreatments were conducted in distilled water (US), 35 °Brix sucrose solution (US-OD), and 75% (v/v) ethanol solution (US-ET). Results indicated that ultrasound pretreatments modified the microstructure of slices and shortened drying times. Compared to the control group, ultrasound application reduced drying time by 19.01-28.8% for US, 15.33-24.41% for US-OD, and 38.88-42.76% for US-ET. Tri-frequency ultrasound provoked the largest reductions, which exhibited time reductions of 6.36-11.20% and better product quality compared to MFU. Pretreatments increased color changes and loss of bioactive compounds compared to the control but improved the flavor profile and enzyme inactivation. Among pretreated sample groups, US-OD slices had lower browning and rehydration abilities, higher hardness values, and better retention of nutrients and bioactive compounds. Therefore, the combination of TFU and osmotic dehydration could simultaneously improve ultrasound efficacy, reduce drying time, and produce quality products.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | | | - Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Ma X, Yang D, Qiu W, Mei J, Xie J. Influence of Multifrequency Ultrasound-Assisted Freezing on the Flavour Attributes and Myofibrillar Protein Characteristics of Cultured Large Yellow Croaker ( Larimichthys crocea). Front Nutr 2022; 8:779546. [PMID: 34977123 PMCID: PMC8714677 DOI: 10.3389/fnut.2021.779546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
The influence of multifrequency ultrasound-assisted freezing (UAF) as compared with single- and dual-UAF on the flavour, microstructure, and myofibrillar proteins (MPs) of cultured large yellow croaker was investigated to improve food quality in a sustainable way and address the major global challenges concerning food and nutrition security in the (near) future. Multifrequency UAF-treated samples had lower total volatile basic nitrogen values during freezing than single- and dual-UAF-treated samples. Thirty-six volatile compounds were identified by solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry (GC-MS) during freezing, and the multifrequency UAF-treated samples showed significant decreases in the relative contents of fishy flavoured compounds, including 1-penten-3-ol and 1-octen-3-ol. In addition, multifrequency UAF treatment better maintained a well-organised protein secondary structure by maintaining higher α-helical and β-sheet contents and stabilising the tertiary structure. Scanning electron microscopy images indicated that the ice crystals developed by the multifrequency UAF were fine and uniformly distributed, resulting in less damage to the frozen large yellow croaker samples. Therefore, multifrequency UAF improved the flavour attributes and MP characteristics of the large yellow croaker samples. Overall, multifrequency UAF can serve as an efficient way for improving food quality and nutritional profile in a sustainable way.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
10
|
Xu B, Azam SMR, Feng M, Wu B, Yan W, Zhou C, Ma H. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. ULTRASONICS SONOCHEMISTRY 2021; 81:105855. [PMID: 34871910 PMCID: PMC8649895 DOI: 10.1016/j.ultsonch.2021.105855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Ultrasound as an eco-friendly green technology has been widely studied in food processing. Nevertheless, there is a lack of publications regarding the application of ultrasound in food processing using large-scale reactors. In this paper, the mechanisms and the devices of multi-frequency power ultrasound (MFPU) are described. Moreover, the MFPU applied in enzymolysis of protein, and washing of fruits and vegetables are reviewed. The application of MFPU can improve the enzymolysis of protein through modification on enzyme, modification on substrate materials, and facilitation of the enzymatic hydrolysis process. The ultrasound treatment can enhance the removal of microorganisms, and pesticides on the surface of fruits and vegetables. Furthermore, the reactors of ultrasound-assisted enzymolysis of protein, and washing of fruits and vegetables on the industrial scale are also detailed. This review paper also considers future trends, limitations, drawbacks, and developments of ultrasound application in enzymolysis and washing.
Collapse
Affiliation(s)
- Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - S M Roknul Azam
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Min Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bengang Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weiqiang Yan
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|