1
|
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. PATHOPHYSIOLOGY 2024; 31:352-366. [PMID: 39051223 PMCID: PMC11270384 DOI: 10.3390/pathophysiology31030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, Federal University of Ouro Preto—UFOP, Ouro Preto 35402-163, MG, Brazil;
| | - Ingra Tais Malacarne
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Daisy Maria Favero Salvadori
- Department of Pathology, Botucatu Medical School, Sao Paulo State University—UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
2
|
Yang G, Liu Z, Dong S, Zhao X, Ge Z, Cheng Z, Zhang X, Wang K. Duodenal-jejunal bypass surgery activates eNOS and enhances antioxidant system by activating AMPK pathway to improve heart oxidative stress in diabetic cardiomyopathy rats. J Diabetes 2024; 16:e13516. [PMID: 38087869 PMCID: PMC11212293 DOI: 10.1111/1753-0407.13516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy is a serious complication of obesity with type 2 diabetes and is a major cause of mortality. Metabolic surgery, such as duodenal-jejunal bypass (DJB), can effectively improve diabetic cardiomyopathy; however, the underlying mechanisms remain elusive. Oxidative stress is one of the pivotal mechanisms of diabetic cardiomyopathy. Our objective was to investigate the effect and potential mechanisms of DJB on oxidative stress in the heart of diabetic cardiomyopathy rats. METHODS High-fat diet combined with intraperitoneal injection of streptozotocin was used to establish diabetic cardiomyopathy rats. DJB was performed on diabetic cardiomyopathy rats, and high glucose and palmitate were used to simulate diabetic cardiomyopathy in H9C2 cells in vitro. Sera from different groups of rats were used for experiments in vivo and in vitro. RESULTS DJB effectively improved oxidative stress and activated the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway to increase endothelial nitric oxide synthase (eNOS) phosphorylation level and the expression of antioxidative system-related proteins and genes in the heart of diabetic cardiomyopathy rats. AMPK agonists and serum from DJB rats activated the AMPK pathway to increase eNOS phosphorylation level and the expression of antioxidative system-related proteins and genes and decreased the content of reactive oxygen species in H9C2 cells, but this improvement was almost eliminated by the addition of AMPK inhibitors. CONCLUSIONS DJB activates eNOS and enhances the antioxidant system by activating the AMPK pathway-and not solely by improving blood glucose-to improve oxidative stress in the heart of diabetic cardiomyopathy rats.
Collapse
Affiliation(s)
- Guangwei Yang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zitian Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Shuohui Dong
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhao
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zheng Ge
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Zhiqiang Cheng
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Kexin Wang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
3
|
Pakyurek H, Aykota MR, Kilic-Erkek O, Ozban M, Senol H, Bor-Kucukatay M. Investigation of time-dependent alterations in adipokine levels and endoplasmic reticulum stress markers in obese patients with laparoscopic sleeve gastrectomy. Life Sci 2023; 330:121987. [PMID: 37541576 DOI: 10.1016/j.lfs.2023.121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS We aimed to investigate the time-dependent alterations of serum, adipose tissue WISP1, Nrg4, asprosin, SPX adipokines and serum ER stress markers GRP78, XBP1, ATF6, CHOP in obese patients who underwent laparoscopic sleeve gastrectomy (LSG). MATERIALS AND METHODS Morbidly obese patients (n = 19) and normal-weight individuals (n = 19) were compared. Preoperative (control, obese) and postoperative 1st, 3rd and 6th month (obese) follow-up measurements were obtained. Levels of adipokines, ER stress markers were measured with commercial kits. RESULTS Body mass index (BMI), total fat, trunk fat mass, fat percentage of obese patients decreased after LSG. Postoperative serum glucose, insulin, HOMA-IR, triglyceride levels of obese patients decreased, HDL increased. In obese patients, preoperative LDL and total cholesterol, which were not different from control, were higher in the postoperative 6th month measurements. Omentum WISP1, subcutaneous adipose tissue WISP1 and SPX, and serum WISP1, asprosin, CHOP levels were higher, Nrg4 lower in obese patients. Serum Nrg4 was still lower in the postoperative 1st month measurements, while WISP1 was higher in the 3rd and asprosin in the 3rd, 6th months compared to control. 1st and 3rd month ATF6 and 3rd month CHOP concentrations were lower than preoperative values. Serum CHOP measured at the 6th month was significantly higher than control. Negative correlations were observed between serum Nrg4 and fat percentage, TG concentration. CHOP was negatively correlated with fat percentage. CONCLUSION The correlations between changes in serum Nrg4, CHOP and fat percentage highlight the roles of Nrg4 and CHOP in the fat loss following LSG.
Collapse
Affiliation(s)
- H Pakyurek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
| | - M R Aykota
- Pamukkale University, Faculty of Medicine, Department of General Surgery, Denizli, Turkey
| | - O Kilic-Erkek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
| | - M Ozban
- Pamukkale University, Faculty of Medicine, Department of General Surgery, Denizli, Turkey
| | - H Senol
- Pamukkale University, Faculty of Medicine, Department of Biostatistics, Denizli, Turkey
| | - M Bor-Kucukatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey.
| |
Collapse
|
4
|
Liu P, Yang Z, Wang Y, Sun A. Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference. Int J Mol Sci 2023; 24:13188. [PMID: 37685995 PMCID: PMC10487555 DOI: 10.3390/ijms241713188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The heart requires a variety of energy substrates to maintain proper contractile function. Glucose and long-chain fatty acids (FA) are the major cardiac metabolic substrates under physiological conditions. Upon stress, a shift of cardiac substrate preference toward either glucose or FA is associated with cardiac diseases. For example, in pressure-overloaded hypertrophic hearts, there is a long-lasting substrate shift toward glucose, while in hearts with diabetic cardiomyopathy, the fuel is switched toward FA. Stromal interaction molecule 1 (STIM1), a well-established calcium (Ca2+) sensor of endoplasmic reticulum (ER) Ca2+ store, is increasingly recognized as a critical player in mediating both cardiac hypertrophy and diabetic cardiomyopathy. However, the cause-effect relationship between STIM1 and glucose/FA metabolism and the possible mechanisms by which STIM1 is involved in these cardiac metabolic diseases are poorly understood. In this review, we first discussed STIM1-dependent signaling in cardiomyocytes and metabolic changes in cardiac hypertrophy and diabetic cardiomyopathy. Second, we provided examples of the involvement of STIM1 in energy metabolism to discuss the emerging role of STIM1 in the regulation of energy substrate preference in metabolic cardiac diseases and speculated the corresponding underlying molecular mechanisms of the crosstalk between STIM1 and cardiac energy substrate preference. Finally, we briefly discussed and presented future perspectives on the possibility of targeting STIM1 to rescue cardiac metabolic diseases. Taken together, STIM1 emerges as a key player in regulating cardiac energy substrate preference, and revealing the underlying molecular mechanisms by which STIM1 mediates cardiac energy metabolism could be helpful to find novel targets to prevent or treat cardiac metabolic diseases.
Collapse
Affiliation(s)
- Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuli Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Meng W, Peng R, Du L, Zheng Y, Liu D, Qu S, Xu Y, Zhang Y. Weight Loss After Laparoscopic Sleeve Gastrectomy Ameliorates the Cardiac Remodeling in Obese Chinese. Front Endocrinol (Lausanne) 2021; 12:799537. [PMID: 35126313 PMCID: PMC8815081 DOI: 10.3389/fendo.2021.799537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the impact of weight loss after laparoscopic sleeve gastrectomy (LSG) on cardiac structural and functional remodeling in obese Chinese. A total of 44 obese participants were enrolled consecutively. The physical, laboratory, electrocardiographic, and echocardiographic parameters of pre-and postoperative were recorded. The average follow-up time was 12.28 ± 5.80 months. The body mass index (BMI) of the patients with obesity was decreased from 41.6 ± 7.44 to 30.3 ± 5.73kg/m2 (P<0.001) after LSG. The systolic and diastolic blood pressure of the subjects was significantly reduced from 137.9 ± 15.7mmHg to 123.0 ± 16.0 and 83.4 ± 10.8 to 71.3 ± 11.7mmHg (P<0.001), respectively. The levels of fasting insulin and fasting blood glucose were significantly decreased (38.8 ± 32.1 to 8.43 ± 4.16 mU/L, P<0.001; 6.95 ± 2.59 to 4.64 ± 0.50mmol/L, P<0.001). Total cholesterol (TC, 4.66 ± 0.84 to 4.23 ± 0.75mmol/L, P<0.001) and triglyceride (TG, 1.92 ± 1.21 to 0.85 ± 0.30mmol/L, P<0.001) decreased significantly. Cardiovascular geometric parameters including aortic sinus diameter (ASD, 32.9 ± 2.83mm to 32.0 ± 3.10mm, P<0.05), left atrial diameter (LAD, 38.8 ± 4.03 to 36.2 ± 4.12mm, P<0.001), and interventricular septum thickness(IVS, 10.2 ± 0.93 to 9.64 ± 0.89mm, P<0.001) were significantly reduced. The ratio of weight loss (RWL) was positively correlated with the changes of LAD. The change of IVS was negatively correlated with the change of fasting blood glucose (GLU). Weight loss after LSG could effectively improve cardiac structural, but not functional, abnormality in obese Chinese.
Collapse
Affiliation(s)
- Weilun Meng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Nanjing Medical University, Shanghai, China
| | - Ronggang Peng
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lei Du
- Department of Metabolic Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yixing Zheng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Nanjing Medical University, Shanghai, China
| | - Diya Liu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Nanjing Medical University, Shanghai, China
- *Correspondence: Yawei Xu, ; Yi Zhang,
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yawei Xu, ; Yi Zhang,
| |
Collapse
|
6
|
Sun M, Zhao W, Li S, Li C, Feng Y, Geng D. Gastric Sleeve Surgery Alleviates Obesity-Associated Insulin Resistance and Suppresses Endoplasmic Reticulum Stress in Adipose Tissue of db/db Mice. Obes Surg 2019; 29:3220-3227. [DOI: 10.1007/s11695-019-03966-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Tao S, Chen L, Song J, Zhu N, Song X, Shi R, Ge G, Zhang Y. Tanshinone IIA ameliorates diabetic cardiomyopathy by inhibiting Grp78 and CHOP expression in STZ-induced diabetes rats. Exp Ther Med 2019; 18:729-734. [PMID: 31258708 DOI: 10.3892/etm.2019.7580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the common diabetic complications, causes a high rate of mortality in patients with diabetes. Tanshinone IIA (TSIIA), one of the components of Salvia miltiorrhiza (Danshen), has anti-oxidative stress activity and is widely used to treat diabetes-associated diseases. However, its efficacy on DCM remains unclear. The present study aimed to investigate the potential therapeutic function of TSIIA on DCM in an experimental diabetic rat model. Streptozotocin (STZ)-induced diabetic rats were intraperitoneally injected with TSIIA for 6 weeks. The present results indicated that blood glucose concentration was slightly reduced in the low-dose TSIIA treatment group. TSIIA injection was also noted to improve cardiac function, and restore loss of mitochondrial cristae, swollen mitochondrial matrix and disorganized myofibrils in myocardial cells, which are thought to be characteristics of apoptosis. Furthermore, TSIIA injection could increase the activity of superoxide dismutase in STZ-induced diabetic rats, and suppress the endoplasmic reticulum (ER) stress signaling pathway via reducing the expression of glucose-regulated protein 78 and C/EBP homologous protein. These results provide evidence that TSIIA may ameliorate DCM in diabetic rats, possibly via suppressing oxidative stress and ER stress activation.
Collapse
Affiliation(s)
- Shuliang Tao
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liuyin Chen
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jingmei Song
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ningning Zhu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xueyi Song
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ruoli Shi
- Community Health Service Center of Sijiqing Street, Hangzhou, Zhejiang 310016, P.R. China
| | - Gangfeng Ge
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yueming Zhang
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
8
|
Huang X, Wu D, Cheng Y, Zhang X, Liu T, Liu Q, Xia P, Zhang G, Hu S, Liu S. Restoration of myocardial glucose uptake with facilitated myocardial glucose transporter 4 translocation contributes to alleviation of diabetic cardiomyopathy in rats after duodenal-jejunal bypass. J Diabetes Investig 2019; 10:626-638. [PMID: 30290074 PMCID: PMC6497603 DOI: 10.1111/jdi.12948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Duodenal-jejunal bypass (DJB) surgery has been reported to effectively relieve diabetic cardiomyopathy (DCM). However, the specific mechanisms remain largely unknown. The present study was designed to determine the alterations of myocardial glucose uptake (MGU) after DJB and their effects on DCM. MATERIALS AND METHODS Duodenal-jejunal bypass and sham surgeries were carried out in diabetic rats induced by a high-fat diet and a low dose of streptozotocin, with chow-diet fed rats as controls. Bodyweight, food intake, glucose homeostasis and lipid profiles were measured at indicated time-points. Cardiac function was evaluated by transthoracic echocardiography and hemodynamic measurement. Cardiac remodeling was assessed by a series of morphometric analyses along with transmission electron microscopy. Positron-emission tomography with fluorine-18 labeled fluorodeoxyglucose was carried out to evaluate the MGU in vivo. Furthermore, myocardial glucose transporters (GLUT; GLUT1 and GLUT4), myocardial insulin signaling and GLUT-4 translocation-related proteins were investigated to elucidate the underlying mechanisms. RESULTS The DJB group showed restored systolic and diastolic cardiac function, along with significant remission in cardiac hypertrophy, cardiac fibrosis, lipid deposit and ultrastructural disorder independent of weight loss compared with the sham group. Furthermore, the DJB group showed upregulated myocardial insulin signaling, hyperphosphorylation of AKT substrate of 160 kDa (AS160) and TBC1D1, along with preserved soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins, facilitating the GLUT-4 translocation to the myocardial cell surface and restoration of MGU. CONCLUSIONS The present findings provide evidence that restoration of MGU is implicated in the alleviation of DCM after DJB through facilitating GLUT-4 translocation, suggesting a potential choice for treatment of human DCM if properly implemented.
Collapse
Affiliation(s)
- Xin Huang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Dong Wu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Yugang Cheng
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Xiang Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Teng Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Qiaoran Liu
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Pingtian Xia
- State Key Laboratory of Diabetes and Obesity SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Guangyong Zhang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Sanyuan Hu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Shaozhuang Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
9
|
Huang X, Liu S, Wu D, Cheng Y, Han H, Wang K, Zhang G, Hu S. Facilitated Ca 2+ homeostasis and attenuated myocardial autophagy contribute to alleviation of diabetic cardiomyopathy after bariatric surgery. Am J Physiol Heart Circ Physiol 2018; 315:H1258-H1268. [PMID: 30141985 DOI: 10.1152/ajpheart.00274.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bariatric surgery has been reported to relieve diabetic cardiomyopathy (DCM) effectively. However, the mechanisms remain largely unknown. To determine the effects of bariatric surgery on DCM via modulation of myocardial Ca2+ homeostasis and autophagy, sleeve gastrectomy (SG), duodenal-jejunal bypass (DJB), and sham surgeries were performed in diabetic rats induced by high-fat diet and a low dose of streptozotocin. Cardiac remodeling was assessed by a series of morphometric and histological analyses. Transthoracic echocardiography and hemodynamic measurements were performed to determine cardiac function. Ca2+ homeostasis was evaluated by measuring Ca2+ transients with fura-2 AM in isolated ventricular myocytes along with detection of the abundance of Ca2+ regulatory proteins in the myocardium. Myocardial autophagic flux was determined by expression of autophagy-related proteins in the absence and presence of chloroquine. Both SG and DJB surgery alleviated DCM morphologically and functionally. Ca2+ transients exhibited a significantly higher amplitude and faster decay after SG and DJB, which could be partially explained by increased expression of ryanodine receptor 2, sarco(endo)plasmic reticulum Ca2+-2ATPase, 12.6-kDa FK506-binding protein, and hyperphosphorylation of phospholamban. In addition, a lower level of light chain 3B and higher level of p62 were detected after both SG and DJB, which was not reversed by chloroquine treatment and associated with activated mammalian target of rapamycin and attenuated AMP-activated protein kinase signaling pathway. Collectively, these results provided evidence that bariatric surgery could alleviate DCM effectively, which may result, at least in part, from facilitated Ca2+ homeostasis and attenuated autophagy, suggesting a potential choice for treatment of DCM when properly implemented. NEW & NOTEWORTHY The present study is the first to investigate the modulation of myocardial Ca2+ homeostasis and autophagy after bariatric surgery and to examine its effects on diabetic cardiomyopathy. Bariatric surgery could facilitate myocardial Ca2+ homeostasis and attenuate myocardial autophagy, contributing to the alleviation of cardiomyopathy morphologically and functionally in a diabetic rat model.
Collapse
Affiliation(s)
- Xin Huang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China.,State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Dong Wu
- State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Yugang Cheng
- State Key Laboratory of Diabetes and Obesity Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Haifeng Han
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University , Jinan , People's Republic of China
| |
Collapse
|
10
|
Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model. J Physiol Biochem 2018; 74:431-439. [DOI: 10.1007/s13105-018-0636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
|