1
|
Gugliuzza A, Boi C. Editorial for the Special Issue "Preparation and Application of Advanced Functional Membranes". MEMBRANES 2024; 14:100. [PMID: 38786935 PMCID: PMC11122922 DOI: 10.3390/membranes14050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Membrane science is a discipline that cuts across almost all fields of research and experimentation [...].
Collapse
Affiliation(s)
- Annarosa Gugliuzza
- Institute on Membrane Technology-National Research Council, CNR-ITM, Via Pietro Bucci 17C, 87036 Rende, Italy
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
2
|
Jakubski Ł, Dudek G, Turczyn R. Applicability of Composite Magnetic Membranes in Separation Processes of Gaseous and Liquid Mixtures-A Review. MEMBRANES 2023; 13:384. [PMID: 37103811 PMCID: PMC10142046 DOI: 10.3390/membranes13040384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Recent years have shown a growing interest in the application of membranes exhibiting magnetic properties in various separation processes. The aim of this review is to provide an in-depth overview of magnetic membranes that can be successfully applied for gas separation, pervaporation, ultrafiltration, nanofiltration, adsorption, electrodialysis, and reverse osmosis. Based on the comparison of the efficiency of these separation processes using magnetic and non-magnetic membranes, it has been shown that magnetic particles used as fillers in polymer composite membranes can significantly improve the efficiency of separation of both gaseous and liquid mixtures. This observed separation enhancement is due to the variation of magnetic susceptibility of different molecules and distinct interactions with dispersed magnetic fillers. For gas separation, the most effective magnetic membrane consists of polyimide filled with MQFP-B particles, for which the separation factor (αrat O2/N2) increased by 211% when compared to the non-magnetic membrane. The same MQFP powder used as a filler in alginate membranes significantly improves water/ethanol separation via pervaporation, reaching a separation factor of 12,271.0. For other separation methods, poly(ethersulfone) nanofiltration membranes filled with ZnFe2O4@SiO2 demonstrated a more than four times increase in water flux when compared to the non-magnetic membranes for water desalination. The information gathered in this article can be used to further improve the separation efficiency of individual processes and to expand the application of magnetic membranes to other branches of industry. Furthermore, this review also highlights the need for further development and theoretical explanation of the role of magnetic forces in separation processes, as well as the potential for extending the concept of magnetic channels to other separation methods, such as pervaporation and ultrafiltration. This article provides valuable insights into the application of magnetic membranes and lays the groundwork for future research and development in this area.
Collapse
Affiliation(s)
- Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Varga Á, Bihari-Lucena E, Ladányi M, Szabó-Nótin B, Galambos I, Koris A. Experimental Study and Modeling of Beer Dealcoholization via Reverse Osmosis. MEMBRANES 2023; 13:329. [PMID: 36984716 PMCID: PMC10056248 DOI: 10.3390/membranes13030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The goals of the present investigation are to study and to model pale lager beer dealcoholization via reverse osmosis (RO). Samples were dealcoholized at a temperature of 15 ± 1 °C. An Alfa Laval RO99 membrane with a 0.05 m2 surface was used. The flux values were measured during the separations. The ethanol content, extract content, bitterness, color, pH, turbidity, and dynamic viscosity of beer and permeate samples were measured. The initial flux values were determined using linear regression. The initial ethanol flux (JEtOH 0) values were calculated from the initial flux values and the ethanol content values. A 2P full factorial experimental design was applied, and the factors were as follows: transmembrane pressure (TMP): 10, 20, 30 bar; retentate flow rate (Q): 120, 180, 240 L/h; JEtOH 0 was considered as the response. The effect sizes of the significant parameters were calculated. The global maximum of the objective function was found using a self-developed Grid Search code. The changes in the analytical parameters were appropriate. The TMP had a significant effect, while the Q had no significant effect on the JEtOH 0. The effect size of the TMP was 1.20. The optimal value of the factor amounted to TMP = 30 bar. The predicted JEtOH 0 under the above conditions was 121.965 g/m2 h.
Collapse
Affiliation(s)
- Áron Varga
- Department of Research and Development, Pécsi Brewery, Alkotmány utca 94., H-7624 Pécs, Hungary
| | - Eszter Bihari-Lucena
- Department of Food Process Engineering, Hungarian University of Agriculture and Life Sciences, Ménesi út 44., H-1118 Budapest, Hungary
- Department of Agricultural Business and Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., H-1118 Budapest, Hungary
- Department of Bioengineering and Fermentation Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 45., H-1118 Budapest, Hungary
- ICON PLC, Szépvölgyi út 39., H-1037 Budapest, Hungary
| | - Márta Ladányi
- Department of Applied Statistics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., H-1118 Budapest, Hungary
| | - Beatrix Szabó-Nótin
- Department of Fruit and Vegetable Processing Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43., H-1118 Budapest, Hungary
| | - Ildikó Galambos
- Department of Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós utca 18., H-8800 Nagykanizsa, Hungary
| | - András Koris
- Department of Food Process Engineering, Hungarian University of Agriculture and Life Sciences, Ménesi út 44., H-1118 Budapest, Hungary
| |
Collapse
|
4
|
Wae AbdulKadir WAF, Ahmad AL, Ooi BS. Hydrophobic Montmorillonite/PVDF Membrane: Experimental Investigation of Membrane Synthesis toward Wetting Characterization and Performance via DCMD. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Cao Z, Kruczek B, Thibault J. Monte Carlo Simulations for the Estimation of the Effective Permeability of Mixed-Matrix Membranes. MEMBRANES 2022; 12:1053. [PMID: 36363607 PMCID: PMC9694028 DOI: 10.3390/membranes12111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent years have seen the explosive development of mixed-matrix membranes (MMMs) for a myriad of applications. In gas separation, it is desired to concurrently enhance the permeability, selectivity and physicochemical properties of the membrane. To help achieving these objectives, experimental characterization and predictive models can be used synergistically. In this investigation, a Monte Carlo (MC) algorithm is proposed to rapidly and accurately estimate the relative permeability of ideal MMMs over a wide range of conditions. The difference in diffusivity coefficients between the polymer matrix and the filler particle is used to adjust the random progression of the migrating species inside each phase. The solubility coefficients of both phases at the polymer−filler interface are used to control the migration of molecules from one phase to the other in a way to achieve progressively phase equilibrium at the interface. Results for various MMMs were compared with the results obtained with the finite difference method under identical conditions, where the results from the finite difference method are used in this investigation as the benchmark method to test the accuracy of the Monte Carlo algorithm. Results were found to be very accurate (in general, <1% error) over a wide range of polymer and filler characteristics. The MC algorithm is simple and swift to implement and provides an accurate estimation of the relative permeability of ideal MMMs. The MC method can easily be extended to investigate more readily non-ideal MMMs with particle agglomeration, interfacial void, polymer-chain rigidification and/or pore blockage, and MMMs with any filler geometry.
Collapse
|
6
|
Ehsan M, Razzaq H, Razzaque S, Bibi A, Yaqub A. Recent advances in sodium alginate‐based membranes for dehydration of aqueous ethanol through pervaporation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehwish Ehsan
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Humaira Razzaq
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Shumaila Razzaque
- School of Science, Department of Chemistry University of Management and Technology Lahore Pakistan
| | - Aasma Bibi
- Department of Chemistry University of Wah Wah Cantt Pakistan
| | - Azra Yaqub
- Chemistry Division, Directorate of Science Pakistan Institute of Nuclear Science and Technology (PINSTECH), 45650 Pakistan
| |
Collapse
|
7
|
Jakubski Ł, Grzybek P, Chrobak A, Haye E, Colomer JF, Konieczny K, Turczyn R, Dudek G. Single-molecule magnets as novel fillers with superior dispersibility – First application of a tetranuclear iron(III) molecular magnet [Fe4(acac)6(Br-mp)2] for pervaporative dehydration of ethanol. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
AbdulKadir WAFW, Ahmad AL, Boon Seng O. Carnauba Wax/Halloysite Nanotube with Improved Anti-Wetting and Permeability of Hydrophobic PVDF Membrane via DCMD. MEMBRANES 2021; 11:membranes11030228. [PMID: 33807017 PMCID: PMC8005014 DOI: 10.3390/membranes11030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.
Collapse
|
9
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|