1
|
Kaczmarek DK, Klejdysz T, Pacholak A, Kaczorek E, Pernak J. Environmental impact assessment of dicationic ionic liquids with ammonium-phosphonium cations and amino acid anions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134793. [PMID: 38850954 DOI: 10.1016/j.jhazmat.2024.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.
Collapse
Affiliation(s)
- Damian Krystian Kaczmarek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Research Institute, Węgorka 20, Poznan 60-318, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Juliusz Pernak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| |
Collapse
|
2
|
Escobedo-Quevedo K, Lankheet MJ, Pen I, Trienens M, Helsen HHM, Wertheim B. Studying foraging behavior to improve bait sprays application to control Drosophila suzukii. BMC Ecol Evol 2024; 24:60. [PMID: 38734594 PMCID: PMC11088012 DOI: 10.1186/s12862-024-02251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.
Collapse
Affiliation(s)
- K Escobedo-Quevedo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - M J Lankheet
- Wageningen University & Research, Experimental Zoology WIAS, Wageningen, The Netherlands
| | - I Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - M Trienens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - H H M Helsen
- Wageningen University & Research, Field crops, Randwijk, The Netherlands
| | - B Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Shakourian-Fard M, Ghenaatian HR, Kamath G. Geminal Dicationic Ionic Liquids (GDILs) and Their Adsorption on Graphene Nanoflakes. ACS OMEGA 2024; 9:7575-7587. [PMID: 38405523 PMCID: PMC10882669 DOI: 10.1021/acsomega.3c06581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
In this work, the configuration and stability of 15 geminal dicationic ionic liquids (GDILs) and their adsorption mechanism on the graphene nanoflake (GNF) are investigated using the density functional theory (DFT) method. We find that the interactions of dications ([DAm]+, [DIm]+, [DImDm]+, [DPy]+, and [DPyrr]+)) are stabilized near the anions ([BF4]-, [PF6]-, and [Tf2N]-) in the most stable configurations of GDILs through electrostatic interactions, van der Waals (vdW) interactions, and hydrogen bonding (H-bonding). Our calculations show that the adsorption of the GDILs on the GNF is consistent with the charge transfer and occurs via X···π (X = N, O, F), C-H···π, and π···π noncovalent interactions, leading to a decrease in the strength of the intermolecular interactions between the dications and anions in the GDILs. The thermochemistry calculations reveal that the formation of GDIL@GNF complexes is an exothermic and favorable reaction. The adsorption energy (Eads) calculations show that the highest Eads values for the interaction of GDILs containing [BF4]-, [PF6]-, and [Tf2N]- anions with the GNF are observed for the [DPy][BF4]@GNF (-23.56 kcal/mol), [DPy][PF6]@GNF (-29.29 kcal/mol), and [DPyrr][Tf2N]@GNF (-24.74 kcal/mol) complexes, respectively. Our results show that the adsorption of the GDILs on the GNF leads to the decrease of the chemical potential (μ), chemical hardness (η), and HOMO-LUMO energy gap (Eg) values and an increase in the electrophilicity index (ω) value of the GNF. In addition, the effect of GDIL adsorption on the UV-vis absorption spectrum was studied at the TD-M06-2X/cc-pVDZ level of theory. We find that the adsorption of GDILs results in minimal change in the shape of the main absorption peak (at λ = 363 nm) in the GNF spectrum and only shifts it to higher wavelengths. On the other hand, a new peak appears in the GNF spectrum upon adsorption of [DPy][Y] (Y = [BF4]-, [PF6]-, and [Tf2N]-) due to the relatively strong π···π interactions between the [DPy]+ dication and GNF. Finally, the transition density matrix (TDM) heat maps show that electron transfers related to the excitation states in the GDIL@GNF complexes occur mainly through π(C=C) → π*(C=C) transitions in the GNF and the transitions from [DPy]+ dication to the GNF.
Collapse
Affiliation(s)
- Mehdi Shakourian-Fard
- Department
of Chemical Engineering, Birjand University
of Technology, Birjand,
P.O. Box 97175/569, Iran
| | | | - Ganesh Kamath
- Dalzierfiver
LLC, 3500 Carlfied St., El Sobrante, California 94803, United States
| |
Collapse
|
4
|
Zafar A, Imtiaz‐ud‐Din, Palgrave RG, Muhammad H, Yousuf S, Evans T. Physico-Chemical Properties of Magnetic Dicationic Ionic Liquids with Tetrahaloferrate Anions. ChemistryOpen 2023; 12:e202200229. [PMID: 36599708 PMCID: PMC9812754 DOI: 10.1002/open.202200229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Indexed: 01/06/2023] Open
Abstract
A series of imidazolium-based symmetrical and asymmetrical dicationic ionic liquids (DcILs) with alkyl spacers of different length and with [FeCl3 Br]- as counter ion have been synthesized. The synthesized DcILs are characterized by using FTIR and Raman spectroscopy as well as mass spectrometry, along with single-crystal XRD analysis. Physicochemical properties such as solubility, thermal stability and magnetic susceptibility are also measured. These compounds show low melting points, good solubility in water and organic solvents, thermal stability, and paramagnetism. The products of molar susceptibility and temperature (χmol ⋅T) for the synthesized DcILs have been found between 4.05 to 4.79 emu mol-1 K Oe-1 and effective magnetic moment values have also been determined to be compared to that expected from the spin-only approximation.
Collapse
Affiliation(s)
- Anham Zafar
- Chemistry DepartmentUniversity College London20 Gordon StreetLondonWC1E 0AJUK
- Department of ChemistryQuaid-i-Azam UniversityIslamabad453208Pakistan
| | - Imtiaz‐ud‐Din
- Department of ChemistryQuaid-i-Azam UniversityIslamabad453208Pakistan
| | - Robert G. Palgrave
- Chemistry DepartmentUniversity College London20 Gordon StreetLondonWC1E 0AJUK
| | - Haji Muhammad
- Department of ChemistryFederal Urdu University of Arts, Sciences and TechnologyKarachi75300Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of ChemistryInternational Center for Chemical and Biological SciencesUniversity of KarachiKarachi75270Pakistan
| | - Tim Evans
- Chemistry DepartmentUniversity College London20 Gordon StreetLondonWC1E 0AJUK
| |
Collapse
|
5
|
Zielińska D, Skrzypczak A, Peplińska B, Borysiak S. Nanocellulose-Based Polymer Composites Functionalized with New Gemini Ionic Liquids. Int J Mol Sci 2022; 23:15807. [PMID: 36555444 PMCID: PMC9784869 DOI: 10.3390/ijms232415807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
The manuscript discusses the application of dimeric imidazolium ionic liquids with an aliphatic linker of different lengths, constituting a new class of compounds called gemini, for the modification of renewable materials. This innovative functionalization with the use of ionic liquids made it possible to obtain polymer composite nanomaterials with renewable fillers, which will reduce the consumption of petroleum-based raw materials and also be directly related to the reduction of energy intensity. Renewable filler in the form of nanocellulose modified with ionic liquids, as well as polymer composites with such filler obtained by extrusion and injection molding techniques, were subjected to detailed characterization using techniques like: X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR), dispersion studies (DLS), morphological analysis (SEM), differential scanning calorimetry (DSC), hot-stage polarized light microscopy and characterization of mechanical properties. The use of innovative dimeric ionic liquids proved to be an effective method to carry out efficient functionalization of cellulose. This provided a stable space structure between polysaccharide particles, limiting aggregate formation. It was shown that chemical modification with ionic liquids has a significant effect on the nucleation activity of cellulose fillers and the formation of the supermolecular structure of the polymer matrix, which consequently allowed to obtain polymer composites with excellent strength characteristics and increased flexibility, which will allow to increase their application potential. Innovative ionic liquids have contributed to obtaining green nanomaterials with excellent functional properties, which have not been described in the literature so far.
Collapse
Affiliation(s)
- Daria Zielińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Andrzej Skrzypczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University, PL-61614 Poznan, Poland
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
6
|
Kondratenko YA, Makovskaya ON, Antuganov DO, Zolotarev AA, Ugolkov VL, Nadporojskii MA, Kochina TA. Dicationic protic ionic liquids based on N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
|
8
|
Wojcieszak M, Kaczmarek DK, Krzyźlak K, Siarkiewicz A, Klejdysz T, Materna K. Surface properties of dicationic ionic liquids and correlation with biological activity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The surface activity of dicationic ionic liquids is described in this paper. The basic interfacial parameters including critical micelle concentration (CMC), surface tension at the CMC (γ
CMC), the adsorption efficiency (pC20), surface excess (Γmax), the minimum surface occupied by a single molecule (A
min), and Gibbs energy (ΔG
0
ads) were investigated and compared. Basically, we wanted to extend our previous study on dicationic ionic liquids with bis-ammonium cation. Knowing that, the compounds obtained are effective in limiting the feeding of adult and larvae confused flour beetle (T. confusum), it was decided to correlate the deterrent activity with the surface properties of analyzed dicationic ionic liquids. Accordingly, it was found that the deterrent activity of the studied compounds increases with increasing wetting ability.
Collapse
Affiliation(s)
- Marta Wojcieszak
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | | | - Klaudia Krzyźlak
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Amelia Siarkiewicz
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection, National Research Institute , Poznan , Poland
| | - Katarzyna Materna
- Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| |
Collapse
|
9
|
Pernak J, Niemczak M, Rzemieniecki T, Marcinkowska K, Praczyk T. Dicationic Herbicidal Ionic Liquids Comprising Two Active Ingredients Exhibiting Different Modes of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2545-2553. [PMID: 35170944 PMCID: PMC8895401 DOI: 10.1021/acs.jafc.1c07750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the framework of this study, dicationic herbicidal ionic liquids (HILs) containing tetramethylene-1,4-bis(decyldimethylammonium) and dodecylmethylene-1,12-bis(decyldimethylammonium), including two different herbicidal anions exhibiting different modes of action, were synthesized and characterized. One herbicide incorporated into the HILs was a tribenuron-methyl belonging to ALS inhibitors, while the second herbicidal anion was a synthetic auxin that acts as a growth regulator, namely 2,4-dichlorophenoxyacetate (2,4-D), 2-(2,4-dichlorophenoxy)propionate, (2,4-DP), 2,4,5-trichlorophenoxyacetate (2,4,5-T), 4-chloro-2-methylphenoxyacetiate (MCPA), 2-(4-chloro-2-methylphenoxy)propionate (MCPP), and 4-chlorophenoxyacetate (4-CPA). The obtained products were found to be unstable and decomposed, which can be attributed to the presence of an additional methyl group within the sulfonylurea bridge of the tribenuron-methyl. The synthesized HILs exhibited good affinity with polar and semipolar solvents, with ethyl acetate and hexane as the only solvents that did not dissolve the HILs. Greenhouse tests demonstrated that most of the obtained HILs were more effective than the reference herbicide containing tribenuron-methyl. The length of the alkyl chain in the cation also influenced the effectiveness of the HILs. Better effects were observed for dodecylmethylene-1,12-bis(decyldimethylammonium) cations compared to tetramethylene-1,4-bis(decyldimethylammonium). Therefore, the novel dicatonic HILs showed to integrate the advent of the combination of the different herbicides into a single molecule, enhance herbicidal efficacy, and reduce the risk of weed resistance due to the various modes of action of the applied treatment.
Collapse
Affiliation(s)
- Juliusz Pernak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
- . Tel: 00148-61-6653682
| | - Michał Niemczak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | - Tomasz Rzemieniecki
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | | | - Tadeusz Praczyk
- Institute
of Plant Protection - National Research Institute, Poznan 60-318, Poland
| |
Collapse
|
10
|
Akl ZF, Ezat A. Preparation and application of a novel ionic liquid-type dicationic surfactant in extractive preconcentration of trace uranium (VI). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Cation-Anion Interactions, Stability, and IR Spectra of Dicationic Amino Acid-Based Ionic Liquids Probed Using Density Functional Theory. J Mol Model 2021; 27:180. [PMID: 34023983 DOI: 10.1007/s00894-021-04796-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
In this work, we have theoretically studied the dicationic ionic liquids (DILs) constructed from geminal methylimidazolium dication with varying amino acid anions and spacers using density functional theory. Amino acid-based DILs form via strong C-H···O hydrogen bonds. These hydrogen bonds have a significant role in stabilizing the DILs. The higher cation-anion interaction energy in the order of covalent bond energy and liquid density of DILs imply higher thermal stability than their mono analogues. The C-H stretching frequencies are above 3100 cm-1 in all complexes and form a signature for DILs. Interestingly, aliphatic and aromatic amino acid anions show similar molecular properties. Overall, the DILs formed from amino acids exhibit high stability and large surface tension and are chemically non-toxic; hence, they can replace inorganic DILs.
Collapse
|
12
|
Kaczmarek DK, Rzemieniecki T, Gwiazdowska D, Kleiber T, Praczyk T, Pernak J. Choline-based ionic liquids as adjuvants in pesticide formulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Kaczmarek DK, Gwiazdowska D, Juś K, Klejdysz T, Wojcieszak M, Materna K, Pernak J. Glycine betaine-based ionic liquids and their influence on bacteria, fungi, insects and plants. NEW J CHEM 2021. [DOI: 10.1039/d1nj00498k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Natural origin ionic liquids with betaine-based cations as new agrochemicals.
Collapse
Affiliation(s)
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance
- Poznan University of Economics and Business
- Poznan 61-875
- Poland
| | - Krzysztof Juś
- Department of Natural Science and Quality Assurance
- Poznan University of Economics and Business
- Poznan 61-875
- Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research Institute
- Poznan 60-318
- Poland
| | - Marta Wojcieszak
- Department of Chemical Technology
- Poznan University of Technology
- Poznan 60-965
- Poland
| | - Katarzyna Materna
- Department of Chemical Technology
- Poznan University of Technology
- Poznan 60-965
- Poland
| | - Juliusz Pernak
- Department of Chemical Technology
- Poznan University of Technology
- Poznan 60-965
- Poland
| |
Collapse
|
14
|
Salvitti C, Chiarotto I, Pepi F, Troiani A. Charge-Tagged N-Heterocyclic Carbenes (NHCs): Revealing the Hidden Side of NHC-Catalysed Reactions through Electrospray Ionization Mass Spectrometry. Chempluschem 2020; 86:209-223. [PMID: 33252194 DOI: 10.1002/cplu.202000656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Indexed: 01/08/2023]
Abstract
N-heterocyclic carbenes (NHCs) are key intermediates in a variety of chemical reactions. Owing to their transient nature, the interception and characterization of these reactive species have always been challenging. Similarly, the study of reaction mechanisms in which carbenes act as catalysts is still an active research field. This Minireview describes the contribution of electrospray ionization mass spectrometry (ESI-MS) to the detection of charge-tagged NHCs resulting from the insertion of an ionic group into the molecular scaffold. The use of different mass spectrometric techniques, combined with the charge-tagging strategy, allowed clarification of the involvement of NHCs in archetypal reactions and the study of their intrinsic chemistry.
Collapse
Affiliation(s)
- Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| | - Isabella Chiarotto
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Castro Laurenziano 7, Rome, Italy
| | - Federico Pepi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| |
Collapse
|
15
|
Praczyk M, Wielgusz K, Stachowiak W, Niemczak M, Pernak J. Synthesis and efficacy of herbicidal ionic liquids with chlorsulfuron as the anion. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn the framework of this research, four new herbicidal ionic liquids (HILs) comprising chlorsulfuron as the anion were synthesized and characterized. The new salts with chlorsulfuron contained the following cations: tetramethylammonium, didecyldimethylammonium, benzyltrimethylammonium and cholinium. All products were obtained with high yields exceeding 90% via acid–base reaction or ion exchange reaction, by the use of environment-friendly solvents. The structures of all synthesized HILs were confirmed by FT-IR, 1H NMR and 13C NMR analyses. Their efficacy against weeds has been studied under field conditions in fiber flax. All HILs showed herbicidal activity but efficiency was highly dependent on the type of cation and weed species. There were no statistically significant differences in the effectiveness of HILs toward common lambsquarters compared to the reference herbicide, except for salt with cholinium cation that showed significantly lower efficiency. As regards barnyard grass control, all HILs exhibited significantly lower efficacy than that of the reference herbicide, except for didecyldimethylammonium salt that showed similar activity. The synthesized products did not cause damage to flax plants. The obtained results confirmed that the herbicidal effectiveness of the active ingredient (chlorsulfuron) in the form of an ionic liquid can be adjusted by the selection of an appropriate cation in the synthesis.
Collapse
Affiliation(s)
- Marcin Praczyk
- Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71 B, Poznan, Poland
| | - Katarzyna Wielgusz
- Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71 B, Poznan, Poland
| | - Witold Stachowiak
- Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Michał Niemczak
- Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Juliusz Pernak
- Poznan University of Technology, Faculty of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
16
|
Szymaniak D, Maćkowiak A, Ciarka K, Praczyk T, Marcinkowska K, Pernak J. Synthesis and Characterization of Double-Salt Herbicidal Ionic Liquids Comprising both 4-Chloro-2-methylphenoxyacetate and trans-Cinnamate Anions. Chempluschem 2020; 85:2281-2289. [PMID: 32959994 DOI: 10.1002/cplu.202000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 11/11/2022]
Abstract
The synthesis and characteristics are presented of novel double-salt herbicidal ionic liquids (DSHILs) that contain 4-chloro-2-methylphenoxyacetate and trans-cinnamate anions. In the designed synthesis, an anion of natural origin and a herbicidal anion were combined with an amphiphilic bisammonium cation to obtain new DSHILs with high herbicidal activity while high biocompatibility is maintained. The NMR and HRMS spectral analysis confirmed that the target structures were formed. Furthermore, HPLC analyses indicated that, as assumed, both anions were present in equimolar amounts. Experiments regarding the herbicidal effectiveness confirmed that the synthesized DSHILs exhibited high biological activity. The solutions of DSHILs applied during greenhouse studies were characterized by a low contact angle (approx. 55-67°) and surface tension (approx. 32-35 mN m-1 ), which facilitated the contact of the active substance with the plant surface and penetration of the herbicide into the plant tissues.
Collapse
Affiliation(s)
- Daria Szymaniak
- Department of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan, 60-965, Poland
| | - Adam Maćkowiak
- Department of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan, 60-965, Poland
| | - Kamil Ciarka
- Department of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, Poznan, 61-614, Poland
| | - Tadeusz Praczyk
- Institute of Plant Protection, National Research Institute, Węgorka 20, Poznan, 60-318, Poland
| | - Katarzyna Marcinkowska
- Institute of Plant Protection, National Research Institute, Węgorka 20, Poznan, 60-318, Poland
| | - Juliusz Pernak
- Department of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan, 60-965, Poland
| |
Collapse
|
17
|
Ten A, Zazybin A, Zolotareva D, Dauletbakov A, Rafikova K, Yu V, Giner B. Ionic Liquids in Agrochemistry. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608135522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In this review article, we present the latest research in the field of ionic liquids
containing biologically active anions and cations, their potential application in the field of
agrochemistry and agriculture. The article describes examples of the use of ionic liquids as
herbicides, fungicides, antimicrobial agents, deterrents and plant growth stimulants. It also
indicates the advantages and disadvantages of using ionic liquids, such as their multitasking,
toxicity, thermal stability and solubility in water in comparison with commercial chemicals.
Readers will find in the article the prospects for the use of ionic liquids in agriculture, as
well as the high value of using ILs as multifunctional biologically active substances.
Collapse
Affiliation(s)
- Assel Ten
- A.B. Bekturov Institute of Chemical Sciences, 050000, Almaty, Kazakhstan
| | - Alexey Zazybin
- Department of Chemical Engineering, Kazakh-British Technical University, 050000, Almaty, Kazakhstan
| | - Darya Zolotareva
- Department of Chemical Engineering, Kazakh-British Technical University, 050000, Almaty, Kazakhstan
| | - Anuar Dauletbakov
- Department of Chemical Engineering, Kazakh-British Technical University, 050000, Almaty, Kazakhstan
| | - Khadichahan Rafikova
- School of Chemical & Biochemical Engineering, Satbayev University, 050013, Almaty, Kazakhstan
| | - Valentina Yu
- A.B. Bekturov Institute of Chemical Sciences, 050000, Almaty, Kazakhstan
| | - Beatriz Giner
- Faculty of Health Sciences, San Jorge University, 50830, Villanueva de Gállego Zaragoza, Spain
| |
Collapse
|
18
|
Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04224-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Turguła A, Stęsik K, Materna K, Klejdysz T, Praczyk T, Pernak J. Third-generation ionic liquids with N-alkylated 1,4-diazabicyclo[2.2.2]octane cations and pelargonate anions. RSC Adv 2020; 10:8653-8663. [PMID: 35496559 PMCID: PMC9049996 DOI: 10.1039/d0ra00766h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids that belong to the third-generation designs due to their intended biological activity are compounds with high potential applications as plant-protection products. The present study describes the synthesis and characterization of novel ionic liquids with cations based on the alkyl derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO) and an anion derived from naturally occurring pelargonic acid. The developed synthesis method allowed obtaining products with a high yield (≥96%), and the liquids were characterized as high-viscosity liquids at room temperature. This allowed classifying the products as ionic liquids (ILs). The structures of the obtained ILs were confirmed on the basis of their NMR and IR spectra as well as by elemental analysis. All the products exhibited surface activity and were capable of partially wetting a hydrophobic surface. The tested ionic liquids exhibited higher herbicidal activity against winter oilseed rape (Brassica napus L.) and common lambsquarters (Chenopodium album L.) at a lower dose compared to a commercial preparation in greenhouse studies. The studied ionic liquids also exhibited different effects as antifeedants on various insect species. The best results were obtained against beetles belonging to the granary weevil species (Sitophilus granarius L.). The relation between the surface-tension-reduction efficiency pC20 and biological activity was investigated. The herbicidal activity was also correlated with the value of the contact angles for the studied pelargonates. All the obtained results indicate that the designed and synthesized ionic liquids possess double biological functions: herbicidal activity and deterrent activity.
Collapse
Affiliation(s)
- Anna Turguła
- Faculty of Chemical Technology, Poznan University of Technology ul. Berdychowo 4 Poznan 60-965 Poland
| | - Konrad Stęsik
- Faculty of Chemical Technology, Poznan University of Technology ul. Berdychowo 4 Poznan 60-965 Poland
| | - Katarzyna Materna
- Faculty of Chemical Technology, Poznan University of Technology ul. Berdychowo 4 Poznan 60-965 Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Research Institute ul. Władysława Węgorka 20 Poznan 60-318 Poland
| | - Tadeusz Praczyk
- Institute of Plant Protection - National Research Institute ul. Władysława Węgorka 20 Poznan 60-318 Poland
| | - Juliusz Pernak
- Faculty of Chemical Technology, Poznan University of Technology ul. Berdychowo 4 Poznan 60-965 Poland
| |
Collapse
|