1
|
Rcs Phosphorelay Responses to Truncated Lipopolysaccharide-Induced Cell Envelope Stress in Yersinia enterocolitica. Molecules 2020; 25:molecules25235718. [PMID: 33287412 PMCID: PMC7730088 DOI: 10.3390/molecules25235718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria, and its integrity is monitored by various stress response systems. Although the Rcs system is involved in the envelope stress response and regulates genes controlling numerous bacterial cell functions of Yersinia enterocolitica, whether it can sense the truncated LPS in Y. enterocolitica remains unclear. In this study, the deletion of the Y. enterocolitica waaF gene truncated the structure of LPS and produced a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and outer membrane permeability, generating cell envelope stress. The truncated LPS also directly exposed the smooth outer membrane to the external environment and attenuated the resistance to adverse conditions, such as impaired survival under polymyxin B and sodium dodecyl sulfate (SDS) exposure. Further phenotypic experiment and gene expression analysis indicated that the truncated LPS was correlated with the activation of the Rcs phosphorelay, thereby repressing cell motility and biofilm formation. Our findings highlight the importance of LPS integrity in maintaining membrane function and broaden the understanding of Rcs phosphorelay signaling in response to cell envelope stress, thus opening new avenues to develop effective antimicrobial agents for combating Y. enterocolitica infections.
Collapse
|
2
|
Smułek W, Zdarta A, Grzywaczyk A, Guzik U, Siwińska-Ciesielczyk K, Ciesielczyk F, Strzemiecka B, Jesionowski T, Voelkel A, Kaczorek E. Evaluation of the physico-chemical properties of hydrocarbons-exposed bacterial biomass. Colloids Surf B Biointerfaces 2020; 196:111310. [PMID: 32911293 DOI: 10.1016/j.colsurfb.2020.111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
In the efforts for the removal of hazardous materials from the environment biological processes are a valuable tool. Although much attention has been paid to the changes in bacteria at the omics level, another, physical-chemical perspective on the issue is essential, as little is known of microbial response to continuous exposition on harmful substances. This study provides in-depth characterization of the physical-chemical parameters of bacterial biomass after hydrocarbons exposure. To provide comparability of the harmful effects of chlorotoluenes and xylenes non-exposed and 12-months hydrocarbons exposed cells were analyzed, using the advanced spectrometric methods, inverse gas chromatography and low-temperature N2 sorption to evaluate acid-base as well as dispersive properties of the studied biomass. Presented results indicate P. fluorescens B01 cells strategy aimed at protecting the cell, thus lowering its' biodegradation efficiency as a result of metabolic stress. The outcome of the study was that prolonged exposure to pollutants might reduce the bioavailability of hydrocarbons to bacteria cells, and consequently decrease the effectiveness of decontamination of polluted sites by indigenous microorganisms.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Urszula Guzik
- University of Silesia in Katowice, Faculty of Biology and Environmental Protection, Department of Biochemistry, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Filip Ciesielczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Beata Strzemiecka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|