1
|
Ortiz-Aldaco MG, Estévez M, España-Sánchez BL, Bonilla-Cruz J, Rodríguez-deLeón E, Báez JE. Monodisperse oligo(ε-caprolactones) with terpenes and alkyl end-groups: synthesis, isolation, characterization, and antibacterial activity. RSC Adv 2025; 15:276-288. [PMID: 39758912 PMCID: PMC11694720 DOI: 10.1039/d4ra08104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
Linear aliphatic oligoesters derived from ε-caprolactone (CL) were synthesized by ring-opening polymerization (ROP) using terpene alcohols that have antibacterial activity as initiators (nerol, geraniol, β-citronellol and farnesol). Ammonium decamolybdate (NH4)8[Mo10O34] was used as a catalyst. From previous oligoesters, monodisperse species of monomers, dimers, and trimers were isolated by flash column chromatography (FCC). Poly(ε-caprolactone) (PCL) oligoesters [oligo(CLs)] and monodisperse oligomeric species were characterized by different analytical techniques, such as nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization quadrupole time-of-flight mass spectrometry (ESI/MS-QTOF), and Fourier-transform infrared (FTIR) spectroscopy to determine the chemical nature of the samples. The thermal properties were analyzed by differential scanning calorimetry (DSC), which showed significant differences between the olefin and alkyl terminal groups. The end-groups affected crystalline domains according to the crystallization temperatures (T c), melting temperatures (T m), and glass transition temperature (T g) of the oligo(CLs) and monodisperse oligomeric species. In addition, the results of thermogravimetric analysis (TGA) suggest that the thermal degradation in the case of the monomer and dimer species with olefin terminal groups is similar compared to that with the alkyl terminal group. Due to the antimicrobial properties of olefinic initiators, microbiological tests were carried out on the monodisperse oligomeric species through studies of the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiograms. This is the first time in the literature that monodisperse oligomers derived from PCL functionalized with terpenes and alkyl end-groups were tested in terms of their antibacterial properties. The results indicated that these monodisperse species could lead to new antibiotic compounds with potential applications.
Collapse
Affiliation(s)
| | - Miriam Estévez
- Centro de Fisica Aplicada y Tecnología Avanzada (CFATA), UNAM Juriquilla Qro. Mexico
| | | | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Unidad Monterrey Mexico
| | | | - José E Báez
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| |
Collapse
|
2
|
Rubio Hernández-Sampelayo A, Navarro R, González-García DM, García-Fernández L, Ramírez-Jiménez RA, Aguilar MR, Marcos-Fernández Á. Biodegradable and Biocompatible Thermoplastic Poly(Ester-Urethane)s Based on Poly(ε-Caprolactone) and Novel 1,3-Propanediol Bis(4-Isocyanatobenzoate) Diisocyanate: Synthesis and Characterization. Polymers (Basel) 2022; 14:1288. [PMID: 35406162 PMCID: PMC9002640 DOI: 10.3390/polym14071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including bioassay and water uptake measurements. The molecular weight of the soft segment (poly-ε-caprolactone, PCL) and hard segment crystallinity dictated the mechanical behavior and water uptake. The behavior of short PCL-based polyurethanes was elastomeric, whilst increasing the molecular weight of the soft segment led to plastic polyurethanes. Water uptake was hindered for long PCL due to the crystallization of the soft segment within the polyurethane matrix. Furthermore, two different types of chain extender, hydrolyzable and non-hydrolyzable, were also evaluated: polyurethanes based on hydrolyzable chain extenders reached higher molecular weights, thus leading to a better performance than their unhydrolyzable counterparts. The good cell adhesion and cytotoxicity results demonstrated the cell viability of human osteoblasts on the surfaces of these non-toxic biodegradable polyurethanes.
Collapse
Affiliation(s)
- Alejandra Rubio Hernández-Sampelayo
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Universidad Nacional de Educación a Distancia (UNED), Facultad de Ciencias, C/Bravo Murillo, 38, 28015 Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| | - Dulce María González-García
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM-Zacatenco, Col Lindavista, Mexico City 07738, Mexico;
- Universidad de Guanajuato, Departamento de Química, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| |
Collapse
|
3
|
Falcón-Torres PD, Morales-Segoviano AG, Martínez-Salazar AA, Ortiz-Aldaco MG, Navarro R, Marcos-Fernández Á, Ramírez-Hernández A, Moreno KJ, Báez JE. Terpenes versus linear alkyl substituents: effect of the terminal groups on the oligomers derived from poly(ε-caprolactone). CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|