1
|
Sanad MH, Marzook FA, Ibrahim IT, Abd-Elhalim SM, Farrag NS. Preparation and Bioevaluation of Radioiodinated Omberacetam as a Radiotracer for Brain Imaging. RADIOCHEMISTRY 2023; 65:114-121. [DOI: 10.1134/s1066362223010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 09/02/2023]
|
2
|
Sanad MH, Farag AB, Marzook FA, Mandal SK. Radiocomplexation, Chromatographic Separation and Bioevaluation of [99mTc]Dithiocarbamate of Procainamide as Selective Labeled Compound for Myocardial Perfusion Imaging. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Sanad MH, Marzook FA, Mandal SK, Baidya M. Radiocomplexation and Biological Evaluation of [99mTc]Tricarbonyl Rabeprazole as a Radiotracer for Peptic Ulcer Localization. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Sanad MH, Eyssa HM, Marzook FA, Farag AB. Preparation and Bioevaluation of [99mTc]Tricarbonyl Omeprazole for Gastric Ulcer Localization in Mice. RADIOCHEMISTRY 2022. [DOI: 10.1134/s106636222201009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sanad M, Farag A, Bassem SA, Marzook F. Radioiodination of zearalenone and determination of Lactobacillus plantarum effect of on zearalenone organ distribution: In silico study and preclinical evaluation. Toxicol Rep 2022; 9:470-479. [PMID: 35345860 PMCID: PMC8956894 DOI: 10.1016/j.toxrep.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 10/26/2022] Open
|
6
|
Sanad MH, Marzook FA, Farag AB, Mandal SK, Rizvi SFA, Gupta JK. Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
This study focuses on the synthesis and preliminary bio-evaluation of [99mTc]-technetium tricarbonyl procainamide ([99mTc]-technetium tricarbony PA) as a viable cardiac imaging agent. The compound, [99mTc]-technetium tricarbony PA, was synthesized by labelling procainamide with a [99mTc]-technetium tricarbonyl core, yielding a high radiochemical yield and radiochemical purity of 98%. Under optimal circumstances, high radiochemical yield and purity were obtained utilizing [99mTc]-technetium tricarbonyl core within 30 min of incubation at pH 9, 200 µg substrate concentration, and 100 °C reaction temperature. The heart showed a high absorption of 32.39 ± 0.88% of the injected dose/g organ (ID/g), confirming the suitability of [99mTc]-technetium tricarbonyl PA as a viable complex for heart imaging.
Collapse
Affiliation(s)
- M. H. Sanad
- Labeled Compounds Department , Hot Laboratories Center, Egyptian Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Fawzy A. Marzook
- Labeled Compounds Department , Hot Laboratories Center, Egyptian Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Ayman B. Farag
- Pharmaceutical Chemistry Department , Faculty of Pharmacy, Ahram Canadian University , Giza , Egypt
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry , Dr. B. C. Roy College of Pharmacy and Allied Health Sciences , Durgapur 713206 , West Bengal , India
| | - Syed F. A. Rizvi
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , Gansu , P. R. China
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research , GLA University Mathura , Uttar Pradesh , India
| |
Collapse
|
7
|
Eyssa HM, El Refay HM, Sanad MH. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
This study investigates the physicochemical and thermal properties of styrene–butadiene rubber (SBR) nanocomposite foam. Nano-calcium carbonate (CaCO3) was prepared from eggshells (ESs) waste. Sponge rubber nanocomposites were prepared and were irradiated by electron beam (EB) radiation at 25, 75, and 150 kGy. Their physicochemical properties, including foam density, compression set (CS), hardness, abrasion loss, and expansion ratio, and their thermal stability were investigated. The physicochemical properties were enhanced by adding 2.5 phr of a foaming agent. Among the composites examined, the foam composites containing nano-CaCO3 had the lowest CS, abrasion loss, and expansion ratio and the highest hardness and foam density. The results confirmed that the thermal stability was improved by incorporating nano-CaCO3 into the SBR foam and as the radiation dose increased. The sponge containing nanoclay demonstrated an intermediate behavior, whereas that with CaCO3 nanoparticles showed low average cell diameter and size and high cell wall thickness. The radiation process enhanced the foam density, CS, abrasion loss, hardness, and thermal property of the developed nanocomposites by inducing the formation of intermolecular crosslinks within the composite matrix. The results showed that physicochemical properties improved by increasing the radiation dose at 25 kGy.
Collapse
Affiliation(s)
- H. M. Eyssa
- Radiation Chemistry Department , National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority , P. O. Box 29 , Cairo , Egypt
| | - Heba. M. El Refay
- Chemistry Department , Faculty of Science (Girls), Al Azhar University , P.O. Box: 11754 , Cairo , Egypt
| | - M. H. Sanad
- Labeled Compounds Department, Hot Labs Center , Egyptian Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| |
Collapse
|
8
|
Sanad MH, Eyssa HM, Marzook FA, Rizvi SFA, Farag AB, Fouzy ASM, Bassem SA, Ibrahim AA. Synthesis, Radiolabeling, and Biological Evaluation of 99mTc-Tricarbonyl Mesalamine as a Potential Ulcerative Colitis Imaging Agent. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362221060163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Sanad MH, Eyssa HM, Marzook FA, Farag AB, Rizvi SFA, Mandal SK, Patnaik SS, Fouzy ASM. Optimized Chromatographic Separation and Bioevalution of Radioiodinated Ilaprazole as a New Labeled Compound for Peptic Ulcer Localization in Mice. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362221060138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|