1
|
Azameti MK, Tanuja N, Kumar S, Rathinam M, Imoro AWM, Singh PK, Gaikwad K, Sreevathsa R, Dalal M, Arora A, Rai V, Padaria JC. Transgenic tobacco plants overexpressing a wheat salt stress root protein (TaSSRP) exhibit enhanced tolerance to heat stress. Mol Biol Rep 2024; 51:791. [PMID: 38990430 DOI: 10.1007/s11033-024-09755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Heat stress is a detrimental abiotic stress that limits the development of many plant species and is linked to a variety of cellular and physiological problems. Heat stress affects membrane fluidity, which leads to negative effects on cell permeability and ion transport. Research reveals that heat stress causes severe damage to cells and leads to rapid accumulation of reactive oxygen species (ROS), which could cause programmed cell death. METHODS AND RESULTS This current study aimed to validate the role of Triticum aestivum Salt Stress Root Protein (TaSSRP) in plants' tolerance to heat stress by modulating its expression in tobacco plants. The Relative Water Content (RWC), total chlorophyll content, and Membrane Stability Index (MSI) of the seven distinct transgenic lines (T0 - 2, T0 - 3, T0 - 6, T0 - 8, T0 - 9, T0 - 11, and T0 - 13), increased in response to heat stress. Despite the fact that the same tendency was detected in wild-type (WT) plants, changes in physio-biochemical parameters were greater in transgenic lines than in WT plants. The expression analysis revealed that the transgene TaSSRP expressed from 1.00 to 1.809 folds in different lines in the transgenic tobacco plants. The gene TaSSRP offered resistance to heat stress in Nicotiana tabacum, according to the results of the study. CONCLUSION These findings could help to improve our knowledge and understanding of the mechanism underlying thermotolerance in wheat, and the novel identified gene TaSSRP could be used in generating wheat varieties with enhanced tolerance to heat stress.
Collapse
Affiliation(s)
- Mawuli K Azameti
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - N Tanuja
- Directorate of Plant Protection, Quarantine and Storage, Faridabad, Haryana, India
| | - Satish Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Abdul-Wahab M Imoro
- Department of Forestry and Forest Resources Management, University for Development Studies, Tamale, Ghana
| | - P K Singh
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ajay Arora
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Panzade KP, Vishwakarma H, Padaria JC. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco. Mol Biol Rep 2020; 47:3821-3831. [PMID: 32367315 DOI: 10.1007/s11033-020-05472-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Previously, we isolated CDS of Ziziphus nummularia isoform ZnJClpB1-C from heat stress-tolerant genotype Jaisalmer. To further functionally validate ZnJClpB1-C assumed function in tobacco and to generate novel germplasm for heat stress tolerance, this gene was transformed in the Nicotiana tabacum. ClpB proteins are the major key player required for basal and induced heat stress tolerance in plant cells under heat stress. In Ziziphus nummularia ClpB1-C transcript from genotype Jaisalmer was highly upregulated under heat stress conditions, as reported earlier. Nine transgenic lines (T1) from three transgenic tobacco events with single-copy integration (T0 stage) were taken for heat stress analysis at seedling stage. Mature tobacco transgenic plants did not show any deformity as compared to wild plants when grown under normal conditions. Overexpression of ZnJClpB1-C in tobacco significantly increased the tolerance to heat stress. Under heat stress conditions (42 °C), T1 transgenic tobacco seedlings showed higher photosynthetic rate, relative water content, membrane stability index and lower levels of MDA, compared to the wild type untransformed plants. The qRT-PCR analysis revealed different level of transgene expression (1.08 to 3.89 folds) in 9 T1 transgenic lines. In vitro roles of ZnJClpB1-C regulating thermotolerance is not reported so far. These results demonstrated the positive roles of ZnJClpB1-C in enhancing thermotolerance and its use as a genomic resource in the near future for developing heat stress-tolerant germplasm.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
3
|
Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS One 2018; 13:e0207277. [PMID: 30427910 PMCID: PMC6235349 DOI: 10.1371/journal.pone.0207277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Heat shock proteins (HSPs) are a type of conserved molecular chaperone. They exist extensively in plants and greatly contribute to their survival under heat stress. The transcriptional regulation factor heat shock factor (HSF) is thought to regulate the expression of Hsps. In this study, a novel gene designated BcHsfA1 was cloned and characterized from Brassica campestris. Bioinformatic analysis implied that BcHsfA1 belongs to the HsfA gene family and is most closely related to HsfA1 from other plants. Constitutive overexpression of BcHsfA1 significantly improved heat tolerance of tobacco seedlings by affecting physiological and biochemical processes. Moreover, the chlorophyll content of transgenic tobacco plants was significantly increased compared with wild type after heat stress, as were the activities of the important enzymatic antioxidants superoxide dismutase and peroxidase. BcHsfA1 overexpression also resulted in decreased malondialdehyde content and comparative electrical conductivity and increased soluble sugar content in transgenic tobacco plants than wild-type plants exposed to heat stress. Furthermore, we identified 11 candidate heat response genes that were significantly up-regulated in the transgenic lines exposed to heat stress. Together, these results suggested that BcHsfA1 is effective in improving heat tolerance of tobacco seedlings, which may be useful in the development of new heat-resisitant B. campestris strains by genetic engineering.
Collapse
Affiliation(s)
- Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji,China
| | - Yang Wang
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Yunhui Liu
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Wei Zhou
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Bin Yan
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai,China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yafang Shen
- School of Agriculture and Food Science, Key Laboratory of Agricultural Products Quality Improvement Technology in Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, Kai G. Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. PROTOPLASMA 2016; 253:637-645. [PMID: 26298102 DOI: 10.1007/s00709-015-0867-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/29/2015] [Indexed: 05/23/2023]
Abstract
Heat shock proteins (HSPs) exist extensively in eukaryotes and are conserved molecular chaperones with important contribution to plant's survival under environmental stresses. Here, the cloning and characterization of one complementary DNA (cDNA) designated as BcHSP70 from young seedlings of Brassica campestris were reported in the present work. Bioinformatic analysis revealed that BcHSP70 belongs to the plant HSP gene family and had the closest relationship with HSP70-4 from Arabidopsis thaliana. Constitutive overexpression of BcHSP70 in tobacco obviously conferred tolerance to heat stress by affecting different plant physiological parameters. In our study, transgenic tobaccos exhibited higher chlorophyll content than wild-type control when exposed to heat stress. Superoxide dismutase (SOD) and peroxidase (POD) activities, which were helpful to decrease the damage to the membrane system, were significantly higher in transformants compared to wild-type lines. Meanwhile, lower comparative electrical conductivity and malondialdehyde (MDA) content and higher proline and soluble sugar accumulation were found in transgenic tobaccos than in wild-type lines. All these above results indicated that this isolated BcHSP70 cDNA owned the ability to improve the tolerance to heat stress in transgenic tobacco, which provides helpful information and good basement to culture new robust B. campestris variety resistant to high-temperature stress by molecular breeding in the future.
Collapse
Affiliation(s)
- Xiaorong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310018, People's Republic of China
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Bin Yan
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Min Shi
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Wei Zhou
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310018, People's Republic of China
| | - David Zekria
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310018, People's Republic of China
| | - Guoyin Kai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310018, People's Republic of China.
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
5
|
Yu X, Wang G, Huang S, Ma Y, Xia L. Engineering plants for aphid resistance: current status and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2065-83. [PMID: 25151153 DOI: 10.1007/s00122-014-2371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/25/2014] [Indexed: 05/19/2023]
Abstract
The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed. Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.
Collapse
Affiliation(s)
- Xiudao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | | | | | | | | |
Collapse
|
6
|
Kai G, Ji Q, Lu Y, Qian Z, Cui L. Expression of Monstera deliciosa agglutinin gene (mda) in tobacco confers resistance to peach-potato aphids. Integr Biol (Camb) 2012; 4:937-44. [PMID: 22660606 DOI: 10.1039/c2ib20038d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aphid is one of the most serious pests that causes damage to crops worldwide. Lectins from Araceae plant had been proved useful to control the aphid. Herein, the full-length cDNA of Monstera deliciosa agglutinin (mda) gene was cloned and then introduced into tobacco and the influence of the expression of mda in transgenic tobacco against peach-potato aphids (Myzus persicae) was investigated. Among 92 regenerated plants, 59 positive tobacco lines were obtained. Real-time PCR assays and aphid bioassay test revealed that there is a positive correlation between the expression level of mda and the inhibitory effect on peach-potato aphids. The average anti-pests ability of mda transgenic tobacco was 74%, which was higher than that of other reported lectins from Araceae plant. These results indicated that MDA is one of promising insect resistance proteins selected for the control of peach-potato aphids.
Collapse
Affiliation(s)
- Guoyin Kai
- Research and Development Center of Plant Resources, Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China.
| | | | | | | | | |
Collapse
|