1
|
Di Girolamo FG, Fiotti N, Sisto UG, Nunnari A, Colla S, Mearelli F, Vinci P, Schincariol P, Biolo G. Skeletal Muscle in Hypoxia and Inflammation: Insights on the COVID-19 Pandemic. Front Nutr 2022; 9:865402. [PMID: 35529457 PMCID: PMC9072827 DOI: 10.3389/fnut.2022.865402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 infection is often associated with severe inflammation, oxidative stress, hypoxia and impaired physical activity. These factors all together contribute to muscle wasting and fatigue. In addition, there is evidence of a direct SARS-CoV-2 viral infiltration into skeletal muscle. Aging is often characterized by sarcopenia or sarcopenic obesity These conditions are risk factors for severe acute COVID-19 and long-COVID-19 syndrome. From these observations we may predict a strong association between COVID-19 and decreased muscle mass and functions. While the relationship between physical inactivity, chronic inflammation, oxidative stress and muscle dysfunction is well-known, the effects on muscle mass of COVID-19-related hypoxemia are inadequately investigated. The aim of this review is to highlight metabolic, immunity-related and redox biomarkers potentially affected by reduced oxygen availability and/or muscle fatigue in order to shed light on the negative impact of COVID-19 on muscle mass and function. Possible countermeasures are also reviewed.
Collapse
Affiliation(s)
- Filippo G. Di Girolamo
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- *Correspondence: Filippo G. Di Girolamo
| | - Nicola Fiotti
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Ugo G. Sisto
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Alessio Nunnari
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Stefano Colla
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical ad Health Science, Clinica Medica, Cattinara Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants (Basel) 2020; 9:E886. [PMID: 32962110 PMCID: PMC7555806 DOI: 10.3390/antiox9090886] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive release of inflammatory cytokines and oxidative stress (OS) are triggering factors in the onset of chronic diseases. One of the factors that can ensure health in humans is regular physical activity. This type of activity can enhance immune function and dramatically prevent the spread of the cytokine response and OS. However, if physical activity is done intensely at irregular intervals, it is not only unhealthy but can also lead to muscle damage, OS, and inflammation. In this review, the response of cytokines and OS to exercise is described. In addition, it is focused predominantly on the role of reactive oxygen and nitrogen species (RONS) generated from muscle metabolism and damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, the influence of factors such as age, sex, and type of exercise protocol (volume, duration, and intensity of training) is analyzed. The effect of antioxidant supplements on improving OS and inflammatory cytokines is somewhat ambiguous. More research is needed to understand this issue, considering in greater detail factors such as level of training, health status, age, sex, disease, and type of exercise protocol.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
| |
Collapse
|