1
|
Turizo-Smith AD, Córdoba-Hernandez S, Mejía-Guarnizo LV, Monroy-Camacho PS, Rodríguez-García JA. Inflammation and cancer: friend or foe? Front Pharmacol 2024; 15:1385479. [PMID: 38799159 PMCID: PMC11117078 DOI: 10.3389/fphar.2024.1385479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic inflammation plays a crucial role in the onset and progression of pathologies like neurodegenerative and cardiovascular diseases, diabetes, and cancer, since tumor development and chronic inflammation are linked, sharing common signaling pathways. At least 20% of breast and colorectal cancers are associated with chronic inflammation triggered by infections, irritants, or autoimmune diseases. Obesity, chronic inflammation, and cancer interconnection underscore the importance of population-based interventions in maintaining healthy body weight, to disrupt this axis. Given that the dietary inflammatory index is correlated with an increased risk of cancer, adopting an anti-inflammatory diet supplemented with nutraceuticals may be useful for cancer prevention. Natural products and their derivatives offer promising antitumor activity with favorable adverse effect profiles; however, the development of natural bioactive drugs is challenging due to their variability and complexity, requiring rigorous research processes. It has been shown that combining anti-inflammatory products, such as non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and statins, with plant-derived products demonstrate clinical utility as accessible adjuvants to traditional therapeutic approaches, with known safety profiles. Pharmacological approaches targeting multiple proteins involved in inflammation and cancer pathogenesis emerge as a particularly promising option. Given the systemic and multifactorial nature of inflammation, comprehensive strategies are essential for long term success in cancer therapy. To gain insights into carcinogenic phenomena and discover diagnostic or clinically relevant biomarkers, is pivotal to understand genetic variability, environmental exposure, dietary habits, and TME composition, to establish therapeutic approaches based on molecular and genetic analysis. Furthermore, the use of endocannabinoid, cannabinoid, and prostamide-type compounds as potential therapeutic targets or biomarkers requires further investigation. This review aims to elucidate the role of specific etiological agents and mediators contributing to persistent inflammatory reactions in tumor development. It explores potential therapeutic strategies for cancer treatment, emphasizing the urgent need for cost-effective approaches to address cancer-associated inflammation.
Collapse
Affiliation(s)
- Andrés David Turizo-Smith
- Doctorado en Oncología, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Samantha Córdoba-Hernandez
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lidy Vannessa Mejía-Guarnizo
- Facultad de Ciencias, Maestría en Ciencias, Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | |
Collapse
|
2
|
Gan T, Xing Q, Li N, Deng Z, Pan C, Liu X, Zheng L. Protective Effect of Vitexin Against IL-17-Induced Vascular Endothelial Inflammation Through Keap1/Nrf2-Dependent Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300331. [PMID: 38299432 DOI: 10.1002/mnfr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Vitexin, a C-glycosylated flavonoid, is abundant in food sources and has potential health-beneficial properties. However, the targets for its beneficial effects remain largely unknown. This study aims to establish an in vitro cell model of vascular low-grade inflammation and explore the antiinflammatory mechanism of vitexin. METHODS AND RESULTS Low-dose TNFα and IL-17 are combined to establish a cell model of vascular low-grade inflammation. Cell-based studies show that low-dose TNFα (1 ng mL-1) alone has a slight effect, but its combination with IL-17 can potently induce protein expression of inflammatory cytokines, leading to an inflammatory state. However, the vascular inflammation caused by low-dose TNF plus IL-17 does not lead to oxidative stress, and reactive oxygen species (ROS) does not involved in developing this inflammation. Vitexin can be absorbed by human umbilical vein endothelial (HUVEC) cells to increase the Nrf2 protein level and attenuate inflammation. In addition, the antiinflammatory effect of vitexin is blocked by the knockdown of Nrf2. Further localized surface plasmon resonance, drug affinity responsive target stability, and molecular docking demonstrate that vitexin can directly interact with Keap1 to disrupt Keap1-Nrf2 interaction and thus activate Nrf2. Treatment of mice with a bolus oral gavage of vitexin (100 mg kg-1 body weight) or a high-fat diet supplemented with vitexin (5 mg kg-1 body weight per day) for 12 weeks confirms the rapid increase in blood vitexin levels and subsequent incorporation into blood vessels to activate Nrf2 and ameliorate inflammation in vivo. CONCLUSION The findings provide a reliable cell model of vascular low-grade inflammation and indicate Nrf2 protein as the potential target of vitexin to inhibit vascular inflammation.
Collapse
Affiliation(s)
- Ting Gan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Qian Xing
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Nan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Changxuan Pan
- Inspection and Quarantine and Epidemic Prevention and Control Center of Daxing District Agriculture and Rural Bureau of Beijing, Beijing, 102600, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
3
|
Bettiol A, Argento FR, Fini E, Bello F, Di Scala G, Taddei N, Emmi G, Prisco D, Becatti M, Fiorillo C. ROS-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in Giant Cell Arteritis. Thromb Res 2023; 230:1-10. [PMID: 37598635 DOI: 10.1016/j.thromres.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Gerardo Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy.
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| |
Collapse
|
4
|
Zhang F, Feng J, Zhang J, Kang X, Qian D. Quercetin modulates AMPK/SIRT1/NF-κB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Exp Ther Med 2020; 20:280. [PMID: 33200005 DOI: 10.3892/etm.2020.9410] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation and oxidative stress serve interrelated roles in the development of atherosclerosis and other vascular diseases. Quercetin has been previously reported to exhibit numerous beneficial properties towards several metabolic conditions and cardiovascular disease. The present study aimed to evaluate the effects of quercetin on the 5'adenosine monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NF-κB signaling pathway and inflammatory/oxidative stress response in diabetic-induced atherosclerosis in the carotid artery of rats. Male Wistar rats were used to create a diabetes-induced atherosclerosis model by the administration of high fat diet (HFD) with streptozotocin, which lasted for 8 weeks. Control and diabetic rats received quercetin (30 mg/kg/day; orally) for the last 2 weeks of the diabetic period. Plasma lipid profile and vascular levels of oxidative stress markers, inflammatory cytokines, NF-κB signaling proteins and SIRT1 expression were evaluated using ELISA and western blotting. Quercetin treatment in HFD diabetic rats was reported to improve the lipid profile and reduce the number of atherosclerotic lesions, atherogenic index and malondialdehyde levels, whilst increasing the activity of enzymatic antioxidants in the carotid artery. Additionally, the inflammatory response was suppressed by quercetin administration, as indicated by the reduced NF-κB and IL-1β levels, and increased IL-10 levels. Furthermore, SIRT1 expression was revealed to be significantly increased in response to quercetin treatment compared with non-treated HFD rats. However, these effects of quercetin were abolished or reversed by the administration of compound-C (0.2 mg/kg), a specific AMPK blocker, in HFD rats. Therefore, quercetin may have promising potential in ameliorating atherosclerotic pathophysiology in the rat carotid artery by inhibiting oxidative stress and inflammatory responses mechanistically by modulating the AMPK/SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fengwei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jia Feng
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, Shaanxi 710054, P.R. China
| | - Jingyu Zhang
- Department of Gastroenterology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710082, P.R. China
| | - Xin Kang
- Department of Endocrinology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Dun Qian
- Department of Cardiology, Xi'an Lintong Development Zone Boren Hospital, Xi'an, Shaanxi 710600, P.R. China
| |
Collapse
|
5
|
Sciatti E, Bernardi N, Dallapellegrina L, Valentini F, Fabbricatore D, Scodro M, Cotugno A, Alonge M, Munari F, Zanini B, Ricci C, Vizzardi E. Evaluation of systo-diastolic cardiac function and arterial stiffness in subjects with new diagnosis of coeliac disease without cardiovascular risk factors. Intern Emerg Med 2020; 15:981-988. [PMID: 31898206 DOI: 10.1007/s11739-019-02261-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
In literature, there are conflicting opinions on the development of cardiovascular disease risk in patients with coeliac disease (CD). The aim of the research was to identify in young subjects without cardiovascular risk factor and newly diagnosed CD, alterations in different instrumental parameters that are associated with an augmented cardiovascular risk. Twenty-one consecutive young adults with a new diagnosis of CD and without cardiovascular risk factors were prospectively enrolled and underwent transthoracic echocardiography to analyse ascending aorta elastic properties [including tissue Doppler imaging strain (TDI-ε)] and left ventricular 2D strains (global longitudinal, radial and circumferential), and applanation tonometry by SphygmoCor. Cases were compared with 21 age- and sex-matched healthy controls. Mean age of the cases was 38 ± 9 years and 15 of them (71%) were female. Brachial and central blood pressure was higher in the CD group. Elastic properties of the ascending aorta were all impaired in the CD group: TDI-ε was altered in 57% of cases (0% of controls, p < 0.001). Concentric remodelling and grade I diastolic dysfunction were present in 38% and 24% of cases, respectively (0% of controls, p < 0.001). Global longitudinal strain was normal in all subjects, while radial and circumferential strain were altered in 67% and 35%, respectively (0% of controls, p < 0.001). In young subjects without cardiovascular risk factor, a newly diagnosed CD is associated with altered aortic elastic properties, left ventricular concentric remodelling and diastolic dysfunction and altered radial and circumferential strain.
Collapse
Affiliation(s)
- Edoardo Sciatti
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Nicola Bernardi
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Lucia Dallapellegrina
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Francesca Valentini
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Davide Fabbricatore
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Marta Scodro
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Annunziata Cotugno
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Marco Alonge
- Gastroenterology Unit, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Francesca Munari
- Gastroenterology Unit, ASST Spedali Civili and University of Milan, Brescia, Italy
- Gastroenterology Unit, ASST Spedali Civili and University of Milan, Milan, Italy
| | - Barbara Zanini
- Gastroenterology Unit, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Chiara Ricci
- Gastroenterology Unit, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- Cardiology Unit, ASST Spedali Civili and University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
6
|
Bettiol A, Hatemi G, Vannozzi L, Barilaro A, Prisco D, Emmi G. Treating the Different Phenotypes of Behçet's Syndrome. Front Immunol 2019; 10:2830. [PMID: 31921115 PMCID: PMC6915087 DOI: 10.3389/fimmu.2019.02830] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Behçet's syndrome (BS) is a multisystemic vasculitis, characterized by different clinical involvements, including mucocutaneous, ocular, vascular, neurological, and gastrointestinal manifestations. Based on this heterogeneity, BS can be hardly considered as a single clinical entity. Growing evidence supports that, within BS, different phenotypes, characterized by clusters of co-existing involvements, can be distinguished. Namely, three major BS phenotypes have been reported: (a) the mucocutaneous and articular phenotype, (b) the extra-parenchymal neurological and peripheral vascular phenotype, and (c) the parenchymal neurological and ocular phenotype. To date, guidelines for the management of BS have been focused on the pharmacological treatment of each specific BS manifestation. However, tailoring the treatments on patient's specific phenotype, rather than on single disease manifestation, could represent a valid strategy for a personalized therapeutic approach to BS. In the present literature review, we summarize current evidence on the pharmacological treatments for the first-, second-, and third-line treatment of the major BS phenotypes.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gulen Hatemi
- Division of Rheumatology, Department of Internal Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Lorenzo Vannozzi
- Eye Clinic, Careggi Teaching Hospital, University of Florence, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology 2 and Multiple Sclerosis Regional Referral Centre, Careggi University Hospital, Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, Taddei N, Prisco D, Fiorillo C. Behçet's syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol 2018; 195:322-333. [PMID: 30472725 DOI: 10.1111/cei.13243] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Behçet's syndrome (BS) is a complex disease with different organ involvement. The vascular one is the most intriguing, considering the existence of a specific group of patients suffering from recurrent vascular events involving the venous and, more rarely, the arterial vessels. Several clinical clues suggest the inflammatory nature of thrombosis in BS, especially of the venous involvement, thus BS is considered a model of inflammation-induced thrombosis. Unique among other inflammatory conditions, venous involvement (together with the arterial one) is currently treated with immunosuppressants, rather than with anti-coagulants. Although many in-vitro studies have suggested the different roles of the multiple players involved in clot formation, in-vivo models are crucial to study this process in a physiological context. At present, no clear mechanisms describing the pathophysiology of thrombo-inflammation in BS exist. Recently, we focused our attention on BS patients as a human in-vivo model of inflammation-induced thrombosis to investigate a new mechanism of clot formation. Indeed, fibrinogen displays a critical role not only in inflammatory processes, but also in clot formation, both in the fibrin network and in platelet aggregation. Reactive oxygen species (ROS)-derived modifications represent the main post-translational fibrinogen alterations responsible for structural and functional changes. Recent data have revealed that neutrophils (pivotal in the pathogenetic mechanisms leading to BS damage) promote fibrinogen oxidation and thrombus formation in BS. Altogether, these new findings may help understand the pathogenetic bases of inflammation-induced thrombosis and, more importantly, may suggest potential targets for innovative therapeutic approaches.
Collapse
Affiliation(s)
- M Becatti
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| | - G Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - A Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Italy.,Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Firenze, Italy
| | - E Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - G Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - N Taddei
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| | - D Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - C Fiorillo
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| |
Collapse
|
8
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
9
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|