1
|
Romero Vega G, Gallo Stampino P. Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics. Molecules 2025; 30:863. [PMID: 40005173 PMCID: PMC11858081 DOI: 10.3390/molecules30040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Natural surfactants are surface-active molecules synthesized from renewable resources (i.e., plants, animals, or microorganisms) and possess properties comparable to conventional surfactants, making them an environmentally friendly potential alternative to petrochemical surfactants. Additionally, they exhibit biological properties such as anti-microbial properties, biodegradability, and less toxicity, allowing their use in everyday products with minimal risk to human health and the environment. Based on their mode of production, natural surfactants can be classified into first-generation or bio-based surfactants and second-generation or biosurfactants, although their definition may vary depending on the author in the literature. This review offers an extensive classification of bio-based surfactants and biosurfactants, focusing on their composition, natural sources, production methods, and potential applications across various industries. Furthermore, the main challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Paola Gallo Stampino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| |
Collapse
|
2
|
Zhang P, Barbot C, Gandikota R, Li C, Gouriou L, Gouhier G, Ling CC. Synthesis of an Ethylenediaminetetraacetic Acid-like Ligand Based on Sucrose Scaffold and Complexation and Proton Relaxivity Studies of Its Gadolinium(III) Complex in Solution. Molecules 2024; 29:4688. [PMID: 39407616 PMCID: PMC11478042 DOI: 10.3390/molecules29194688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Sucrose constitutes a non-toxic, biodegradable, low-cost and readily available natural product. To expand its utility, we developed total synthesis for a ligand based on a sucrose scaffold for potential use as a metal chelation agent. The designed target (compound 2) has a metal-chelating functionality at both the C-6 and C-6' positions, which can provide a first coordination sphere of eight valencies. The designed total synthesis was highly efficient. To demonstrate the utility of the ligand, we studied its complexation with Gd(III). Using potentiometric titration and high-resolution mass spectrometry, we confirmed the formation of a 1:1 complex with Gd(III), which has a respectable formation constant of ~1013.4. Further NMR relaxivity studies show that the Gd(III) complex has a relaxivity (r1) of 7.6958 mmol-1 s-1.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| | - Cécile Barbot
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Ramakrishna Gandikota
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Cenxiao Li
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| | - Laura Gouriou
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Géraldine Gouhier
- University Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie University, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France; (C.B.); (R.G.); (L.G.)
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (P.Z.); (C.L.)
| |
Collapse
|
3
|
Cvečko M, Mastihuba V, Mastihubová M. An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives. Molecules 2024; 29:4067. [PMID: 39274915 PMCID: PMC11397724 DOI: 10.3390/molecules29174067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Phenylpropanoid sucrose esters are a large and important group of natural substances with significant therapeutic potential. This work describes a pilot study of the enzymatic hydroxycinnamoylation of sucrose and its derivatives which was carried out with the aim of obtaining precursors of natural phenylpropanoid sucrose esters, e.g., vanicoside B. In addition to sucrose, some chemically prepared sucrose acetonides and substituted 3'-O-cinnamates were subjected to enzymatic transesterification with vinyl esters of coumaric, ferulic and 3,4,5-trimethoxycinnamic acid. Commercial enzyme preparations of Lipozyme TL IM lipase and Pentopan 500 BG exhibiting feruloyl esterase activity were tested as biocatalysts in these reactions. The substrate specificity of the used biocatalysts for the donor and acceptor as well as the regioselectivity of the reactions were evaluated and discussed. Surprisingly, Lipozyme TL IM catalyzed the cinnamoylation of sucrose derivatives more to the 1'-OH and 4'-OH positions than to the 6'-OH when the 3'-OH was free and the 6-OH was blocked by isopropylidene. In this case, Pentopan reacted comparably to 1'-OH and 6'-OH positions. If sucrose 3'-O-coumarate was used as an acceptor, in the case of feruloylation with Lipozyme in CH3CN, 6-O-ferulate was the main product (63%). Pentopan feruloylated sucrose 3'-O-coumarate comparably well at the 6-OH and 6'-OH positions (77%). When a proton-donor solvent was used, migration of the 3'-O-cinnamoyl group from fructose to the 2-OH position of glucose was observed. The enzyme hydroxycinnamoylations studied can shorten the targeted syntheses of various phenylpropanoid sucrose esters.
Collapse
Affiliation(s)
- Matej Cvečko
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
4
|
Abdelaziz SA, Ahmed EM, Sadek M. Synthesis of homologous series of surfactants from renewable resources, structure-properties relationship, surface active performance, evaluation of their antimicrobial and anticancer potentialities. Sci Rep 2024; 14:13201. [PMID: 38851845 PMCID: PMC11162424 DOI: 10.1038/s41598-024-62905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.
Collapse
Affiliation(s)
- Shimaa A Abdelaziz
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt
| | - M Sadek
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| |
Collapse
|
5
|
Liu L, Jia Y, Zheng L, Luo R, Essawy H, Huang H, Wang Y, Deng S, Zhang J. Development and Characterization of Bio-Based Formaldehyde Free Sucrose-Based Adhesive for Fabrication of Plywood. Polymers (Basel) 2024; 16:640. [PMID: 38475323 DOI: 10.3390/polym16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
In order to solve the problem of excessive consumption of petrochemical resources and the harm of free formaldehyde release to human health, biomass raw materials, such as sucrose (S) and ammonium dihydrogen phosphate (ADP) can be chemically condensed in a simple route under acidic conditions to produce a formaldehyde free wood adhesive (S-ADP), characterized by good storage stability and water resistance, and higher wet shear strength with respect to petroleum based phenolic resin adhesive. The dry and boiling shear strength of the plywood based on S-ADP adhesive are as high as 1.05 MPa and 1.19 MPa, respectively. Moreover, is Modulus of Elasticity (MOE) is as high as 4910 MPa. Interestingly, the plywood based on the developed S-ADP adhesive exhibited good flame retardancy. After burning for 90 s, its shape remains unchanged. Meanwhile, it can be concluded from thermomechanical analysis (TMA) and thermogravimetric analysis (TGA) that the S-ADP acquired excellent modulus of elasticity (MOE) and good thermal stability. It is thus thought promisingly that the use of S-ADP adhesive as a substitute for PF resin adhesive seems feasible in the near future.
Collapse
Affiliation(s)
- Longjiang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
- School of Chemical Engineering, Yunnan Vocational College of National-Defense Technology, Yunnan Open University, Kunming 650223, China
| | - Yongbo Jia
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lulu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Rui Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Heming Huang
- Kunming Xinfeilin Wood-Based Panel Group Co., Ltd., Kunming 650106, China
| | - Yaming Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuduan Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Sakai S, Chen S, Matsuo-Ueda M, Umemura K. Curing Behavior of Sucrose with p-Toluenesulfonic Acid. Polymers (Basel) 2023; 15:4592. [PMID: 38231995 PMCID: PMC10708137 DOI: 10.3390/polym15234592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
With respect to the fossil resources shortage, the development of bio-based wood adhesives is an important research topic in wood science. There has been research on using sucrose for bio-based adhesives. However, a high acid catalyst content and a high hot-pressing temperature are required when manufacturing particleboards. In this study, to explore the possibility of p-toluenesulfonic acid (PTSA) as a promising acid catalyst for sucrose-based adhesives, the curing behavior of sucrose with PTSA (Suc-PTSA) was clarified. The thermal analysis results showed that the thermal properties of sucrose decreased significantly with the addition of PTSA. Based on the results of the insoluble matter rate, the optimal mixture ratio and heating conditions were determined to be 95:5 and 180 °C for 10 min, respectively. According to the results of FT-IR, the heat-treated Suc-PTSA contained furan compounds. In the context of the dynamic viscoelasticity, the onset temperature at which the storage modulus (E') begins to rise was significantly lower than those of the other sucrose-based adhesives. PTSA has the potential to cure sucrose more efficiently and at lower temperatures than previous sucrose-based adhesives, making it a promising acid catalyst for sucrose.
Collapse
Affiliation(s)
| | | | | | - Kenji Umemura
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; (S.S.); (S.C.); (M.M.-U.)
| |
Collapse
|
7
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
8
|
Teng Y, Lan P, White LV, Banwell MG. The useful biological properties of sucrose esters: Opportunities for the development of new functional foods. Crit Rev Food Sci Nutr 2023; 64:8018-8035. [PMID: 37068001 DOI: 10.1080/10408398.2023.2194438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sucrose esters have been deployed as surfactants in many food products since the 1950s. In addition to their useful physical characteristics, sucrose esters also have interesting biological properties that enhance their utility. This review critically examines the broad suite of biological activities that has been attributed to both synthetically-derived and naturally-occurring sucrose esters. These include insecticidal, molluscicidal, plant growth-regulating, anti-microbial, anti-tumor, anti-oxidant, anti-depressive, neuro-protective, anti-inflammatory and anti-plasmodial effects. In addition to providing a summary of the structure-activity profiles of sucrose esters, the various known mechanisms-of action of these compounds are also discussed. Furthermore, since sucrose esters are well-known surfactants, the potential to advantageously apply their industrially desirable physical characteristics in combination with their biological properties is considered. Recent advances in synthetic chemistry that have facilitated the deployment of biologically active sucrose esters as food additives are also described.
Collapse
Affiliation(s)
- Yinglai Teng
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Verboni M, Sisti M, Campana R, Benedetti S, Palma F, Potenza L, Lucarini S, Duranti A. Synthesis and Biological Evaluation of 6- O-Sucrose Monoester Glycolipids as Possible New Antifungal Agents. Pharmaceuticals (Basel) 2023; 16:136. [PMID: 37259288 PMCID: PMC9966131 DOI: 10.3390/ph16020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 10/28/2023] Open
Abstract
A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | | |
Collapse
|
10
|
Stubbs S, Yousaf S, Khan I. A review on the synthesis of bio-based surfactants using green chemistry principles. Daru 2022; 30:407-426. [PMID: 36190619 PMCID: PMC9715898 DOI: 10.1007/s40199-022-00450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES With increasing awareness of the potential adverse impact of conventional surfactants on the environment and human health, there is mounting interest in the development of bio-based surfactants (which are deemed to be safer, more affordable, are in abundance, are biodegradable, biocompatible and possess scalability, mildness and performance in formulation) in personal care products. METHOD A comprehensive literature review around alkyl polyglucosides (APGs) and sucrose esters (SEs) as bio-based surfactants, through the lens of the 12 green chemistry principles was conducted. An overview of the use of bio-based surfactants in personal care products was also provided. RESULTS Bio-based surfactants are derived primarily from natural sources (i.e. both the head and tail molecular group). One of the more common types of bio-based surfactants are those with carbohydrate head groups, where alkyl polyglucosides (APGs) and sucrose esters (SEs) lead this sub-category. As global regulations and user mandate for sustainability and safety increase, evidence to further support these bio-based surfactants as alternatives to their petrochemical counterparts is advantageous. Use of the green chemistry framework is a suitable way to do this. While many of the discussed principles are enforced industrially, others have only yet been applied at a laboratory scale or are not apparent in literature. CONCLUSION Many of the principles of green chemistry are currently used in the synthesis of APGs and SEs. These and other bio-based surfactants should, therefore, be considered suitable and sustainable alternatives to conventional surfactants. To further encourage the use of these novel surfactants, industry must make an effort to implement and improve the use of the remaining principles at a commercial level.
Collapse
Affiliation(s)
- Shea Stubbs
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
11
|
Ionic liquid as dual-function catalyst and solvent for efficient synthesis of sucrose fatty acid esters. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zhang S, Li Y, Hu L. Physical and biological evaluation of glucose hydrazones as biodegradable emulsifiers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Abdulameer Salman A. Cationic carbohydrate-based surfactants derived from renewable resources: Trends in synthetic methods. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Tamang N, Shrestha P, Khadka B, Mondal MH, Saha B, Bhattarai A. A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers (Basel) 2021; 14:127. [PMID: 35012149 PMCID: PMC8747219 DOI: 10.3390/polym14010127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides, polynucleotides, and polypeptides are basic natural polymers. They have various applications based on their properties. This review mostly discusses the application of natural polymers as emulsion stabilizers. Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1-10% concentrated), zein proteins feature 74-89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.
Collapse
Affiliation(s)
- Nirmala Tamang
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| | - Pooja Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | - Binita Khadka
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | | | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Burdwan 713104, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| |
Collapse
|
15
|
Jesus CF, Alves AA, Fiuza SM, Murtinho D, Antunes FE. Mini-review: Synthetic methods for the production of cationic sugar-based surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Chemical Reactivity Descriptors and Molecular Docking Studies of Octyl 6-O-hexanoyl-β-D-glucopyranosides. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3727.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study describes different chemical reactivity predictions of 6-O-hexanoylation of octyl β-D-glucopyranosides prepared from octyl β-D-glucopyranoside (OBG). Also, molecular docking of the OBGs was conducted against SARS-CoV-2 main protease (6LU7), urate oxidase (Aspergillus flavus; 1R51) and glucoamylase (Aspergillus niger; 1KUL). DFT optimization indicated that glucoside 1 and its ester derivatives 2-7 exist in 4C1 conformation with C1 symmetry. Interestingly, the addition of ester group(s) decreased the HOMO-LUMO gap (Δԑ) of glucosides indicating their good chemical reactivities, whereas the other chemical reactivity descriptors indicated their moderate reactive nature. This fact of moderate reactivity was confirmed by their molecular docking with 6LU7, 1R51 and 1KUL. All the esters showed a moderate binding affinity with these three proteins. More importantly, incorporation of the ester group(s) increased binding affinity with 6LU7 and 1R51, whereas decreased with 1KUL as compared to non-ester OBG 1.
Collapse
|
17
|
Pal A, Mondal MH, Adhikari A, Bhattarai A, Saha B. Scientific information about sugar-based emulsifiers: a comprehensive review. RSC Adv 2021; 11:33004-33016. [PMID: 35493572 PMCID: PMC9042091 DOI: 10.1039/d1ra04968b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
The instantaneous demand for foods, detergents, cosmetics, and personal care products that can be commercialized with value-added benefits including natural origin, environmental friendliness, and sustainability is increasing day by day. Accordingly, the associated industries are trying to identify bioactive ingredients that may be natural alternatives to synthetic ones. This review article is mainly aimed at the classification of natural saccharide-based emulsifiers (which are mainly bio-surfactants), their methods of preparation and their various types of applications in daily life activities. Different routes of production of mono and polysaccharide-based emulsifiers and their industrial advantages are exclusively highlighted. The readers can get an approach on how sugar-based emulsifiers are synthesized and used in the pharmaceutical, food, and personal care industries to contribute excellent physicochemical properties and feature excellent functional characteristics. Many of the synthetic procedures are associated with the use of natural ingredients to prepare emulsions concerning “eco-friendly” selective materials. In this report, an endeavour has been made towards contextual examples for the production methods of some saccharide-based emulsifiers and their advantages in various fields. Amphiphilic natural emulsifiers form tiny droplets of oil-in-water stable emulsions and are very much effective for industries.![]()
Collapse
Affiliation(s)
- Aniruddha Pal
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan Burdwan-713104 WB India
| | - Monohar Hossain Mondal
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan Burdwan-713104 WB India .,Chemical Sciences Laboratory, Government General Degree College Singur Hooghly 712409 WB India
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University Kirtipur Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C., Tribhuvan University Biratnagar Nepal
| | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan Burdwan-713104 WB India
| |
Collapse
|
18
|
DEVİ P, MATİN MM, BHUİYAN MMH, HOSSAİN ME. Synthesis, and Spectral Characterization of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.929996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Sasayama T, Hiromori K, Takahashi A, Shibasaki-Kitakawa N. Process for continuous production of sugar esters of medium-chain fatty acid: Effect of residence time on productivity and scale-up design. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Liu Y, Binks BP. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. J Colloid Interface Sci 2021; 594:204-216. [PMID: 33761395 DOI: 10.1016/j.jcis.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Can a mixture of sucrose ester surfactant in vegetable oil be aerated to yield stable oleofoams? Is foaming achievable from one-phase molecular solutions and/or two-phase crystal dispersions? Does cooling a foam after formation induce surfactant crystallisation and enhance foam stability? EXPERIMENTS Concentrating on extra virgin olive oil, we first study the effect of aeration temperature and surfactant concentration on foamability and foam stability of mixtures cooled from a one-phase oil solution. Based on this, we introduce a strategy to increase foam stability by rapidly cooling foam prepared at high temperature which induces surfactant crystallisation in situ. Differential scanning calorimetry, X-ray diffraction, infra-red spectroscopy, surface tension and rheology are used to elucidate the mechanisms. FINDINGS Unlike previous reports, both foamability and foam stability decrease upon decreasing the aeration temperature into the two-phase region containing surfactant crystals. At high temperature in the one-phase region, substantial foaming is achieved (over-run 170%) within minutes of whipping but foams ultimately collapse within a week. We show that surfactant molecules are surface-active at high temperature and that hydrogen bonds form between surfactant and oil molecules. Cooling these foams substantially increases foam stability due to both interfacial and bulk surfactant crystallisation. The generic nature of our findings is demonstrated for a range of vegetable oil foams with a maximum over-run of 330% and the absence of drainage, coalescence and disproportionation being achievable.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
21
|
Abdellahi B, Bois R, Golonu S, Pourceau G, Lesur D, Chagnault V, Drelich A, Pezron I, Nesterenko A, Wadouachi A. Synthesis and interfacial properties of new 6-sulfate sugar-based anionic surfactants. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Abe K, Toyofuku M, Nomura N, Obana N. Autolysis-mediated membrane vesicle formation in Bacillus subtilis. Environ Microbiol 2021; 23:2632-2647. [PMID: 33817925 DOI: 10.1111/1462-2920.15502] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/03/2021] [Indexed: 12/19/2022]
Abstract
It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Jocquel C, Muzard M, Plantier-Royon R, Rémond C. An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters From Wheat Bran. Front Bioeng Biotechnol 2021; 9:647442. [PMID: 33898404 PMCID: PMC8058420 DOI: 10.3389/fbioe.2021.647442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alkyl glycosides and sugars esters are non-ionic surfactants of interest for various applications (cosmetics, food, detergency,…). In the present study, xylans and cellulose from wheat bran were enzymatically converted into pentyl xylosides and glucose and xylose laurate monoesters. Transglycosylation reaction catalyzed by the commercial enzymatic cocktail Cellic Ctec2 in the presence of pentanol led to the synthesis of pentyl β-D-xylosides from DP1 to 3 with an overall yield of 520 mg/g of xylans present in wheat bran. Enzymatic hydrolysis of wheat bran with Cellic Ctec2 and subsequent acylation of the recovered D-glucose and D-xylose catalyzed by the commercial lipase N435 in the presence of lauric acid or methyl laurate produced one D-glucose laurate monoester and one D-xylose laurate monoester. An integrated approach combining transglycosylation and (trans)esterification reactions was successfully developed to produce both pentyl xylosides and D-glucose and D-xylose laurate esters from the same batch of wheat bran.
Collapse
Affiliation(s)
- Chloé Jocquel
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, Reims, France
| |
Collapse
|
24
|
Rodrigues CIS, Wahl A, Gombert AK. Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent. FEMS Yeast Res 2021; 21:6214418. [PMID: 33826723 DOI: 10.1093/femsyr/foab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04-0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.
Collapse
Affiliation(s)
- Carla Inês Soares Rodrigues
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil.,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
25
|
Ishak KA, Fadzil MFA, Annuar MSM. Phase inversion emulsification of different vegetable oils using surfactant mixture of cremophor EL and lipase-synthesized glucose monooleate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Mairinger T, Loos M, Hollender J. Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. WATER RESEARCH 2021; 190:116745. [PMID: 33360422 DOI: 10.1016/j.watres.2020.116745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Synthetic water-soluble polymeric materials are widely employed in e.g. cleaning detergents, personal care products, paints or textiles. Accordingly, these compounds reach sewage treatment plants and may enter receiving waters and the aquatic environment. Characteristically, these molecules show a polydisperse molecular weight distribution, comprising multiple repeating units, i.e. a homologous series (HS). Their analysis in environmentally relevant samples has received some attention over the last two decades, however, the majority of previous studies focused on surfactants and a molecular weight range <1000 Da. To capture a wider range on the mass versus polarity plane and extend towards less polar contaminants, a workflow was established using three different ionization strategies, namely conventional electrospray ionization, atmospheric pressure photoionization and atmospheric pressure chemical ionization. The data evaluation consisted of suspect screening of ca. 1200 suspect entries and a non-target screening of HS with pre-defined accurate mass differences using ca. 400 molecular formulas of repeating units of HS as input and repeating retention time shifts as HS indicator. To study the fate of these water-soluble polymeric substances in the wastewater treatment process, the different stages, i.e. after primary and secondary clarifier, and after ozonation followed by sand filtration, were sampled at a Swiss wastewater treatment plant. Remaining with two different ionization interfaces, ESI and APPI, in both polarities, a non-targeted screening approach led to a total number of 146 HS (each with a minimum number of 4 members), with a molecular mass of up to 1200 detected in the final effluent. Of the 146 HS, ca 15% could be associated with suspect hits and approximately 25% with transformation products of suspects. Tentative characterization or probable chemical structure could be assigned to almost half of the findings. In positive ionization mode various sugar derivatives with differing side chains, for negative mode structures with sulfonic acids, could be characterized. The number of detected HS decreased significantly over the three treatment stages. For HS detectable also in the biological and oxidative treatment stages, a change in HS distribution towards to lower mass range was often observed.
Collapse
Affiliation(s)
- Teresa Mairinger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | | | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
The forgotten sugar: A review on multifarious applications of melezitose. Carbohydr Res 2021; 500:108248. [PMID: 33529787 DOI: 10.1016/j.carres.2021.108248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Although, 187 years elapsed after the discovery of melezitose, it is a high time to deduce some solid applications as there are only 13 more years left to celebrate a double century of this sugar. The forgotten sugar has multifarious applications; it is used as a metabolic marker to differentiate melezitose fermenting microorganisms, as a carbon source to culture specific microorganisms, as a potential surfactant and excipient to stabilize pharmaceuticals, as a lyoprotectant or cryoprotectant for several industrial applications, as an edibility enhancer in food industry, as a hair smoothening agent in cosmetic industry, and provide protective & nourishing effects in fisheries and aquaculture industries. In entomological research, it is used to study niche differentiation, increased longevity of insects and also as a biocontrol agent. This review brings out the best possible applications of melezitose and present in the form of a mnemonic to remember this forgotten sugar.
Collapse
|
28
|
Topical Biocompatible Fluconazole-Loaded Microemulsions Based on Essential Oils and Sucrose Esters: Formulation Design Based on Pseudo-Ternary Phase Diagrams and Physicochemical Characterization. Processes (Basel) 2021. [DOI: 10.3390/pr9010144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To initiate our research into the development of biocompatiîle gelled-microemulsions based on essential oils (EOs) and sucrose esters (SEs) for the topical delivery of fluconazole, this formulation study investigated the usefulness of two relatively harmless natural non-ionic surfactants from the group of SEs (sucrose laurate and stearate) to form, in the presence of antifungal EOs, stable, isotropic microemulsions effective on fluconazole solubilization. Fluconazole’s solubility in EO significantly depended on their chemical composition, showing higher values for cinnamon, oregano and clove essential oils, further selected as oil phase components for microemulsion formulations. The phase behavior of several EO–isopropyl miristate/SE–isopropanol/water systems was assessed through pseudo-ternary phase diagrams constructed by microplate dilution technique. The hydrocarbon chain length of the SE and EO type strongly influenced the size of the microemulsion region in the pseudo-ternary phase diagrams. Ten microemulsion formulations containing 2% fluconazole, 6% or 10% oil mixture of EO–isopropyl myristate in 1:1 ratio, 45% SE-isopropanol mixture and water, were selected and evaluated for physicochemical properties (droplet size, polydispersity, viscosity, refractive index, zeta potential and pH). All formulations were physicochemically acceptable, but viscosity enhancement and further in vitro and in vivo tests are required for the development of biocompatible, clinically safe and effective fluconazole topical preparations.
Collapse
|
29
|
|
30
|
Zhao S, Zhang S, Xu J, Hu L. Synthesis and comparative study of emulsifying and biological properties of triazolated glucolipids. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Sasayama T, Kanezawa A, Hiromori K, Takahashi A, Shibasaki-Kitakawa N. Controlling reaction selectivity for sugar fatty acid ester synthesis by using resins with different basicities. Food Chem 2020; 340:128100. [PMID: 33059268 DOI: 10.1016/j.foodchem.2020.128100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022]
Abstract
A strongly basic ion-exchange resin catalyst was reported to exhibit a high catalytic activity in transesterification to produce a bio-based surfactant, sugar ester under mild condition. However, the side-reactions to decompose the reactant and the product were found to occur. This study was aimed to improve the selectivity of sugar ester synthesis by newly focusing on the basicity of the resin. A weakly basic resin (Diaion WA20) with a lower mass transfer resistance suppressed the decompositions while maintaining synthesis rate. Controlling molar ratio of the reactants in the intraparticle reaction field also increased the reaction selectivity, 72.1% and product yield, 57.5%. Both values were drastically increased compared to the reported values with the strongly basic resin (selectivity 50.9%, yield 14.3%). This is the first knowledge to show a high catalytic activity of weakly basic resin. These results suggest that a more efficient continuous production process would be possible.
Collapse
Affiliation(s)
- Tomone Sasayama
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Ayumu Kanezawa
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Takahashi
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan
| | - Naomi Shibasaki-Kitakawa
- Department of Chemical Engineering, Tohoku University, Aoba-yama 6-6-07, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
32
|
Mora Vargas JA, Orduña Ortega J, Metzker G, Larrahondo JE, Boscolo M. Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds. PHYTOCHEMISTRY 2020; 177:112433. [PMID: 32570051 DOI: 10.1016/j.phytochem.2020.112433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present review describes the chemistry and physiological properties of the sucrose esters (SEs) obtained from natural or synthetic pathways, with emphasis on those that have aliphatic and phenylpropanoid substituents on their sucrose moiety. Synthesis, extraction and characterization methods for the SEs and NSEs are discussed in terms of synthetic procedures, separation techniques and spectroscopic methods. The physiological properties are discussed taking into account the nature of the substituent groups and their regiochemistry (position and number of substitutions) on the sucrose moiety.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Julieth Orduña Ortega
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil; Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Gustavo Metzker
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Jesus Eliecer Larrahondo
- Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Mauricio Boscolo
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
33
|
Pinto GB, Mendes FML, Antunes AMDS. Technological Profile of Lipases in the Pharmaceutical Industry. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190913181530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent decades, enzymes have been the target of considerable research, development,
and innovation. This paper presents an up-to-date overview of the technological application of lipases
in the pharmaceutical industry. Lipases have been used in a variety of ways in the pharmaceutical
industry, both for obtaining bioactive molecules to overcome limitations in the formulation of medicines
and in drug design. This is possible from alternative technologies, such as immobilization and
the use of non-aqueous solvents that allow the use of lipases in commercial-scale processes. In addition,
other technologies have provided the emergence of differentiated and more specific lipases in
order to meet the perspectives of industrial processes. The research indicates that the following years
should be promising for the application of lipase in the industrial biocatalysis and in drug design.
Collapse
|
34
|
Teng Y, Stewart SG, Hai YW, Li X, Banwell MG, Lan P. Sucrose fatty acid esters: synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit Rev Food Sci Nutr 2020; 61:3297-3317. [PMID: 32746632 DOI: 10.1080/10408398.2020.1798346] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The notable physical and chemical properties of sucrose fatty acid esters have prompted their use in the chemical industry, especially as surfactants, since 1939. Recently, their now well-recognized value as nutraceuticals and as additives in cosmetics has significantly increased demand for ready access to them. As such a review of current methods for the preparation of sucrose fatty acid esters by both chemical and enzymatic means is warranted and is presented here together with an account of the historical development of these compounds as surfactants (emulsifiers). The somewhat belated recognition of the antimicrobial, anticancer and insecticidal activities of sucrose esters is also discussed along with a commentary on their structure-property profiles.
Collapse
Affiliation(s)
- Yinglai Teng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia (M310), Crawley, Western Australia, Australia.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| | - Yao-Wen Hai
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Xuan Li
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.,Research Laboratories, Guangzhou Cardlo Biochemical Technology Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Jarosz S, Sokołowska P, Szyszka Ł. Synthesis of fine chemicals with high added value from sucrose: Towards sucrose-based macrocycles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Emulsifiers efficiently prevent hardening of pancakes under refrigerated conditions via inclusion complexes with starch molecules. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Mora Vargas JA, Ortega JO, Dos Santos MBC, Metzker G, Gomes E, Boscolo M. A new synthetic methodology for pyridinic sucrose esters and their antibacterial effects against Gram-positive and Gram-negative strains. Carbohydr Res 2020; 489:107957. [PMID: 32109775 DOI: 10.1016/j.carres.2020.107957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Described are the development of a new synthetic method using ultrasonic irradiation and sodium methoxide as catalyst for a series of pyridinic sucrose esters (py-SEs), derived from transesterification of sucrose with picolinic, nicotinic and isonicotinic methyl esters. The reaction was optimized using a 32 x 2 experimental design, the reaction time, temperature and sucrose: methyl ester molar ratio being evaluated. The method proved to be efficient for obtaining monosubstituted esters (≥83%) with high methyl ester consumption (≥79%). The monosubstituted py-SEs were isolated by semipreparative HPLC, characterized by high-resolution mass spectrometry, calorimetry, vibrational spectroscopy, and 1H and 13C NMR. The py-SEs were tested against E. coli, S. aureos, and P. aeruginosa bacteria with minimum inhibitory concentration values equal or inferior to the reference drugs for both E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, Sao Jose do Rio Preto, SP, Brazil.
| | - Julieth Orduña Ortega
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, Sao Jose do Rio Preto, SP, Brazil; Universidad Santiago de Cali, Facultad de Ciencias Basicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | | | - Gustavo Metzker
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, Sao Jose do Rio Preto, SP, Brazil.
| | - Eleni Gomes
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, Sao Jose do Rio Preto, SP, Brazil.
| | - Mauricio Boscolo
- Sao Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
38
|
Campana R, Merli A, Verboni M, Biondo F, Favi G, Duranti A, Lucarini S. Synthesis and Evaluation of Saccharide-Based Aliphatic and Aromatic Esters as Antimicrobial and Antibiofilm Agents. Pharmaceuticals (Basel) 2019; 12:ph12040186. [PMID: 31861227 PMCID: PMC6958352 DOI: 10.3390/ph12040186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/23/2022] Open
Abstract
A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Duranti
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| | - Simone Lucarini
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| |
Collapse
|
39
|
Zhao Z, Sun S, Wu D, Zhang M, Huang C, Umemura K, Yong Q. Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood. Polymers (Basel) 2019; 11:polym11121909. [PMID: 31756899 PMCID: PMC6960737 DOI: 10.3390/polym11121909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022] Open
Abstract
The development of eco-friendly adhesives for wood composite products has been a major topic in the field of wood science and product engineering. Although the research on tannin-based and soybean protein-based adhesives has already reached, or at least nears, industrial implementation, we also face a variety of remaining challenges with regards to the push for sustainable adhesives. First, petroleum-derived substances remain a pre-requisite for utilization of said adhesive systems, and also the viscosity of these novel adhesives continues to limit its ability to serve as a drop-in substitute. Within this study, we focus upon the development of an eco-friendly plywood adhesive that does not require any addition of petroleum derived reagents, and the resultant liquid adhesive has both high solid contents as well as a manageably low viscosity at processing temperatures. Specifically, a system based on sucrose and ammonium dihydrogen phosphate (ADP) was synthesized into an adhesive with ~80% solid content and with viscosities ranging from 480–1270 mPa·s. The bonding performance of all adhesive-bound veneer specimens satisfied GB/T 9846-2015 standard at 170 °C hot pressing temperature. To better explain the system’s efficiency, in-depth chemical analysis was performed in an effort to understand the chemical makeup of the cured adhesives as well as the components over the time course of curing. Several new structures involving the fixation of nitrogen speak to a novel adhesive molecular network. This research provides a possibility of synthesizing an eco-friendly wood adhesive with a high solid content and a low viscosity by renewable materials, and this novel adhesive system has the potential to be widely utilized in the wood industry.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence: (Z.Z.); (K.U.); (Q.Y.); Tel.: +86-025-8542-7793 (Z.Z.); +81-0774-38-3652 (K.U.); +86-025-8542-7471 (Q.Y.)
| | - Shijing Sun
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Di Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
| | - Min Zhang
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan;
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Kenji Umemura
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan;
- Correspondence: (Z.Z.); (K.U.); (Q.Y.); Tel.: +86-025-8542-7793 (Z.Z.); +81-0774-38-3652 (K.U.); +86-025-8542-7471 (Q.Y.)
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence: (Z.Z.); (K.U.); (Q.Y.); Tel.: +86-025-8542-7793 (Z.Z.); +81-0774-38-3652 (K.U.); +86-025-8542-7471 (Q.Y.)
| |
Collapse
|
40
|
Li X, Hai YW, Ma D, Chen J, Banwell MG, Lan P. Fatty acid ester surfactants derived from raffinose: Synthesis, characterization and structure-property profiles. J Colloid Interface Sci 2019; 556:616-627. [DOI: 10.1016/j.jcis.2019.08.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023]
|
41
|
Koumba Ibinga SK, Fabre JF, Bikanga R, Mouloungui Z. Atypical Reaction Media and Organized Systems for the Synthesis of Low-Substitution Sugar Esters. Front Chem 2019; 7:587. [PMID: 31608269 PMCID: PMC6768285 DOI: 10.3389/fchem.2019.00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Sugar esters are non-ionic surfactants with amphiphilic properties of interest for the formulation of various products in the fields of detergents, foods, medicines, pharmaceuticals, agriculture, and cosmetics. The properties of sugar esters depend on their degree of substitution (we consider degrees of substitution between 1 and 3 here) which guides their use. Sugar esters are biodegradable and non-toxic, and the demand for these compounds is high and continuing to increase. Indeed, interest in these compounds stems from the natural origin of the raw materials, the synthetic processes involved and the performance of the final product. The choice of reaction medium is crucial, to facilitate contact between reactants and prevent hydrolysis of the products. In this review, we provide an overview of the processes and synthesis routes for sugar ester production, ionic liquids and deep eutectic solvent as non-usual media or with organized systems.
Collapse
Affiliation(s)
- Sidrine Kerthy Koumba Ibinga
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRA, Toulouse, France.,Laboratoire des Substances Naturelles et de Synthèse Organo-Métallique, LASNSOM, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Jean-François Fabre
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRA, Toulouse, France
| | - Raphaël Bikanga
- Laboratoire des Substances Naturelles et de Synthèse Organo-Métallique, LASNSOM, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Zéphirin Mouloungui
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRA, Toulouse, France
| |
Collapse
|
42
|
Chen J, Li Y, Chen X, Mai Y, Gao M, Zhang J, Wang X. Efficient Solvent‐Free Synthesis of Sucrose Esters
via
Sand‐Milling Pretreatment on Solid–Liquid Mixtures. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Xiaotian Chen
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Minjie Gao
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Industrial SurfactantGuangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences Guangzhou China
| |
Collapse
|
43
|
Pantoa T, Shompoosang S, Ploypetchara T, Gohtani S, Udomrati S. Surface‐Active Properties and Anti‐Microbial Activities of Esterified Maltodextrins. STARCH-STARKE 2019. [DOI: 10.1002/star.201800265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thidarat Pantoa
- Department of Food Chemistry and PhysicsInstitute of Food ResearchProduct DevelopmentKasetsart University50 ChatuchakBangkok 10900Thailand
| | - Sirinan Shompoosang
- Department of Applied MicrobiologyInstitute of Food Research and Product DevelopmentKasetsart University50 ChatuchakBangkok 10900Thailand
| | - Thongkorn Ploypetchara
- Department of Applied Biological ScienceFaculty of AgricultureKagawa University2393 MikiKagawa 761‐0795Japan
| | - Shoichi Gohtani
- Department of Applied Biological ScienceFaculty of AgricultureKagawa University2393 MikiKagawa 761‐0795Japan
| | - Sunsanee Udomrati
- Department of Food Chemistry and PhysicsInstitute of Food ResearchProduct DevelopmentKasetsart University50 ChatuchakBangkok 10900Thailand
| |
Collapse
|
44
|
Zhao Z, Hayashi S, Xu W, Wu Z, Tanaka S, Sun S, Zhang M, Kanayama K, Umemura K. A Novel Eco-Friendly Wood Adhesive Composed by Sucrose and Ammonium Dihydrogen Phosphate. Polymers (Basel) 2018; 10:E1251. [PMID: 30961176 PMCID: PMC6401688 DOI: 10.3390/polym10111251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Development of a bio-based wood adhesive is a significant goal for several wood-based material industries. In this study, a novel adhesive based upon sucrose and ammonium dihydrogen phosphate (ADP) was formulated in hopes of furthering this industrial goal through realization of a sustainable adhesive with mechanical properties and water resistance comparable to the synthetic resins used today. Finished particleboards exhibited excellent mechanical properties and water resistance at the revealed optimal adhesive conditions. In fact, the board properties fulfilled in principle the requirements of JIS A 5908 18 type standard, however this occured at production conditions for the actual state of development as reported here, which are still different to usual industrial conditions. Thermal analysis revealed addition of ADP resulted in decreases to the thermal thresholds associated with degradation and curing of sucrose. Spectral results of FT-IR elucidated that furanic ring chemistry was involved during adhesive curing. A possible polycondensation reaction pathway was proposed from this data in an attempt to explain why the adhesive exhibited such favorable bonding properties.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
| | - Shin Hayashi
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Wei Xu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhihui Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
| | - Soichi Tanaka
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Shijing Sun
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Min Zhang
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Kozo Kanayama
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Kenji Umemura
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
45
|
Ma YR, Banwell MG, Yan R, Lan P. Comparative Study of the Emulsifying Properties of a Homologous Series of Long-Chain 6'- O-Acylmaltose Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8832-8840. [PMID: 30052434 DOI: 10.1021/acs.jafc.8b02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Emulsifiers derived from renewable resources such as sucrose and fatty acids are high volume commodity chemicals and currently produced by traditional chemical synthesis techniques that lack the capacity to form the most desirable monoesters (of sucrose) in a selective and efficient fashion. The development of new emulsifiers (surfactants) from alternate, structurally simpler but nevertheless abundant disaccharides such as maltose represents a possible solution to this problem. Herein, we report the facile enzymatic preparation of a homologous series of 6'- O-acylmaltose esters and an in-depth evaluation of them revealing that their surfactant properties and thermal stabilities are largely determined by the length of the fatty acid chain. In the first such comparison, we show that the foaming and emulsifying effects of certain of these maltose monoesters are superior to those of their sucrose-derived and commercially exploited counterparts. As such, maltose esters have considerable potential as emulsifiers for use in, for example, the food industry.
Collapse
Affiliation(s)
- Ya-Ru Ma
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , 519070 , China
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Rian Yan
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
| | - Ping Lan
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , 519070 , China
| |
Collapse
|
46
|
Abstract
Carbohydrate fatty acid esters have a broad spectrum of applications in the food, cosmetic, and pharmaceutical industries. The enzyme-catalyzed acylation is significantly more selective than the chemical process and is carried out at milder conditions. Compared with mono- and disaccharides, the acylation of trisaccharides has been less studied. However, trisaccharide esters display notable bioactive properties, probably due to the higher hydrophilicity of the sugar head group. In this chapter, we describe the acylation of two trisaccharides, maltotriose and 1-kestose, catalyzed by different immobilized lipases, using vinyl esters as acyl donors. To illustrate the potential of such compounds, the antitumor activity of 6″-O-palmitoyl-maltotriose is shown.
Collapse
|
47
|
Thermodynamic properties of disaccharide based surfactants adsorption at the water-air interface. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Lucarini S, Fagioli L, Cavanagh R, Liang W, Perinelli DR, Campana M, Stolnik S, Lam JKW, Casettari L, Duranti A. Synthesis, Structure⁻Activity Relationships and In Vitro Toxicity Profile of Lactose-Based Fatty Acid Monoesters as Possible Drug Permeability Enhancers. Pharmaceutics 2018; 10:pharmaceutics10030081. [PMID: 29970849 PMCID: PMC6161018 DOI: 10.3390/pharmaceutics10030081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022] Open
Abstract
Permeability enhancers are receiving increased attention arising from their ability to increase transepithelial permeability and thus, bioavailability of orally or pulmonary administered biopharmaceutics. Here we present the synthesis and the in vitro assaying of a series of lactose-based non-ionic surfactants, highlighting the relationship between their structure and biological effect. Using tensiometric measurements the critical micelle concentrations (CMCs) of the surfactants were determined and demonstrate that increasing hydrophobic chain length reduces surfactant CMC. In vitro testing on Caco-2 intestinal and Calu-3 airway epithelia revealed that cytotoxicity, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, is presented for most of the surfactants at concentrations greater than their CMCs. Further biological study demonstrates that application of cytotoxic concentrations of the surfactants is associated with depolarizing mitochondrial membrane potential, increasing nuclear membrane permeability and activation of effector caspases. It is, therefore, proposed that when applied at cytotoxic levels, the surfactants are inducing apoptosis in both cell lines tested. Importantly, through the culture of epithelial monolayers on Transwell® supports, the surfactants demonstrate the ability to reversibly modulate transepithelial electrical resistance (TEER), and thus open tight junctions, at non-toxic concentrations, emphasizing their potential application as safe permeability enhancers in vivo.
Collapse
Affiliation(s)
- Simone Lucarini
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Laura Fagioli
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Robert Cavanagh
- Drug Delivery and Tissue Engineering Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Wanling Liang
- Department of Pharmacology & Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | | | - Mario Campana
- Science and Technology Facilities Council (STFC), ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Snjezana Stolnik
- Drug Delivery and Tissue Engineering Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Andrea Duranti
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| |
Collapse
|
49
|
Krawczyk J. Solid Wettability Modification via Adsorption of Antimicrobial Sucrose Fatty Acid Esters and Some Other Sugar-Based Surfactants. Molecules 2018; 23:molecules23071597. [PMID: 29966401 PMCID: PMC6100448 DOI: 10.3390/molecules23071597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/03/2022] Open
Abstract
Solid–liquid interface properties play a crucial role in the adsorption and adhesion of different microorganisms to the solid. There are some methods to inhibit microorganisms’ adsorption at the solid–liquid interface and their adhesion to the solid. These methods can be divided into bulk phase and surface modification. They are often based on the surfactants’ effect on the wettability of the solid in a given system, due to the fact that adsorption and wetting properties of the food additive antimicrobial surfactants (sucrose monolaurate and sucrose monodecanoate as well as some other sugar-based ones (n-octyl-β-d-glucopyranoside, n-dodecyl-β-d-glucopyranoside, n-dodecyl-β-d-maltoside)) in the solid-aqueous solution of surfactant-air system were considered. Quantitative description of adsorption of the studied compounds at the solid–liquid interface was made based on the contact angle of the aqueous solutions of studied surfactants on polytetrafluoroethylene, polyethylene, poly(methyl methacrylate), polyamide and quartz surface and their surface tension. From the above-mentioned considerations, it can be seen that during the wettability process of the studied solids, surfactants are oriented in a specific direction depending on the type of the solid and surfactant. This specific orientation and adsorption of surfactant molecules at the solid–water interface cause changes of the solid surface properties and its wettability, which was successfully predicted in the studied systems.
Collapse
Affiliation(s)
- Joanna Krawczyk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| |
Collapse
|
50
|
Zdziennicka A, Krawczyk J, Szymczyk K, Jańczuk B. Macroscopic and Microscopic Properties of Some Surfactants and Biosurfactants. Int J Mol Sci 2018; 19:E1934. [PMID: 29966385 PMCID: PMC6073259 DOI: 10.3390/ijms19071934] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022] Open
Abstract
The adsorption of surfactants at the water-air and solid-water interfaces and their wetting properties decide their practical applications. Therefore the adsorption of monorhamnolipid, surfactin, n-octyl-β-d-glucopyranoside, n-dodecyl-β-d-glucopyranoside, n-dodecyl-β-d-maltoside, sucrose monodecanoate, sucrose monododecanoate, Tween 20, Tween 60, and Tween 80 at the water-air, polytetrafluoroethylene-water, polyethylene-water, poly(methyl methacrylate)-water, polyamide-water, and quartz-water interfaces, their tendency to form micelles as well as their wetting properties, were considered in the light of their microscopic properties. For this purpose, the components and parameters of the surfactant tail and head, water and solids surface tension, and surfactant contactable area with adherent medium were applied for prediction of surfactant-surfactant and surfactant-solid interactions through the water phase with regard to their adsorption, micellization, and wetting processes. Next, the Gibbs free energy of interactions was compared to the Gibbs free energy of surfactant adsorption at the water-air and solid-water interfaces as well as the micellization. It appeared that from the surfactant-surfactant and surfactant-solid interactions through the water phase determined on the basis of the tail and head of surfactant surface tension, it is possible to predict the surfactant tendency to adsorb at the water-air and solid-water interfaces, as well as to form micelles.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Joanna Krawczyk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Katarzyna Szymczyk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| |
Collapse
|