1
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
2
|
Calcium Signaling Involves Na+/H+ Exchanger and IP3 Receptor Activation in T. cruzi Epimastigotes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The calcium ion (Ca2+) plays a fundamental role in the metabolism and cell physiology of eukaryotic cells. In general, increases in cytosolic Ca2+ may come from both of the extracellular environment through specific channels and/or calcium release from intracellular stores. The mechanism by which the ion calcium (Ca2+) is released from intracellular stores in higher eukaryotes is well known; however, in lower eukaryotes is still a subject of study. In the present work, it was elucidated that Trypanosoma cruzi epimastigotes can release Ca2+ from intracellular stores in response to high osmolarity, in a process involving a protein kinase-regulated Na+/H+ exchanger present in the acidocalsisomes of the parasite. In addition, we demonstrated that epimastigote membranes are able to release Ca2+ in response to exogenous activators of both inositol 1,4,5-triphosphate (IP3) and Ryanodine receptors. Furthermore, we also summarize the involvement of calcium-related signaling pathways in biochemical and morphological changes triggered by hyperosmotic stress in T. cruzi epimastigotes.
Collapse
|
3
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
4
|
Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs. Gene 2018; 656:95-105. [PMID: 29501621 DOI: 10.1016/j.gene.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 11/20/2022]
Abstract
Unicellular flagellates that make up the class Kinetoplastida include multiple parasites responsible for public health concerns, including Trypanosoma brucei and T. cruzi (agents of African sleeping sickness and Chagas disease, respectively), and various Leishmania species, which cause leishmaniasis. These diseases are generally difficult to eradicate, with treatments often having lethal side effects and/or being effective only during the acute phase of the diseases, when most patients are still asymptomatic. Phospholipid signaling and metabolism are important in the different life stages of Trypanosoma, including playing a role in transitions between stages and in immune system evasion, thus, making the responsible enzymes into potential therapeutic targets. However, relatively little is understood about how the pathways function in these pathogens. Thus, in this study we examined evolutionary history of proteins from one such signaling pathway, namely phospholipase D (PLD) homologs. PLD is an enzyme responsible for synthesizing phosphatidic acid (PA) from membrane phospholipids. PA is not only utilized for phospholipid synthesis, but is also involved in many other signaling pathways, including biotic and abiotic stress response. 37 different representative Kinetoplastida genomes were used for an exhaustive search to identify putative PLD homologs. The genome of Bodo saltans was the only one of surveyed Kinetoplastida genomes that encoded a protein that clustered with plant PLDs. The representatives from other Kinetoplastida species clustered together in two different clades, thought to be homologous to the PLD superfamily, but with shared sequence similarity with cardiolipin synthases (CLS), and phosphatidylserine synthases (PSS). The protein structure predictions showed that most Kinetoplastida sequences resemble CLS and PSS, with the exception of 5 sequences from Bodo saltans that shared significant structural similarities with the PLD sequences, suggesting the loss of PLD-like sequences during the evolution of parasitism in kinetoplastids. On the other hand, diacylglycerol kinase (DGK) homologs were identified for all species examined in this study, indicating that DGK could be the only pathway for the synthesis of PA involved in lipid signaling in these organisms due to genome streamlining during transition to parasitic lifestyle. Our findings offer insights for development of potential therapeutic and/or intervention approaches, particularly those focused on using PA, PLD and/or DGK related pathways, against trypanosomiasis, leishmaniasis, and Chagas disease.
Collapse
|
5
|
Alves e Silva TL, Savage AF, Aksoy S. Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly. Am J Trop Med Hyg 2016; 94:890-3. [PMID: 26856918 DOI: 10.4269/ajtmh.15-0566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023] Open
Abstract
African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| | - Amy F Savage
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| | - Serap Aksoy
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| |
Collapse
|
6
|
Gimenez AM, Gesumaría MC, Schoijet AC, Alonso GD, Flawiá MM, Racagni GE, Machado EE. Phosphatidylinositol kinase activities in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2015; 203:14-24. [DOI: 10.1016/j.molbiopara.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
|
7
|
Bonansea S, Usorach M, Gesumaría MC, Santander V, Gimenez AM, Bollo M, Machado EE. Stress response to high osmolarity in Trypanosoma cruzi epimastigotes. Arch Biochem Biophys 2012; 527:6-15. [DOI: 10.1016/j.abb.2012.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 11/16/2022]
|