1
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Hu X, Cong P, Song Y, Wang X, Zhang H, Meng N, Fan X, Xu J, Xue C. Comprehensive Lipid Profile of Eight Echinoderm Species by RPLC-Triple TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8230-8240. [PMID: 37196222 DOI: 10.1021/acs.jafc.3c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Echinoderms are of broad interest for abundant bioactive lipids. The comprehensive lipid profiles in eight echinoderm species were obtained by UPLC-Triple TOF-MS/MS with characterization and semi-quantitative analysis of 961 lipid molecular species in 14 subclasses of 4 classes. Phospholipids (38.78-76.83%) and glycerolipids (6.85-42.82%) were the main classes in all investigated echinoderm species, with abundant ether phospholipids, whereas the proportion of sphingolipids was higher in sea cucumbers. Two sulfated lipid subclasses were detected in echinoderms for the first time; sterol sulfate was rich in sea cucumbers, whereas sulfoquinovosyldiacylglycerol existed in the sea star and sea urchins. Furthermore, PC(18:1/24:2), PE(16:0/14:0), and TAG(50:1e) could be used as lipid markers to distinguish eight echinoderm species. In this study, the differentiation of eight echinoderms was achieved by lipidomics and revealed the uniqueness of the natural biochemical fingerprints of echinoderms. The findings will help evaluate the nutritional value in the future.
Collapse
Affiliation(s)
- Xinxin Hu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, Qingdao, Shandong 266002, China
| | - Nan Meng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaowei Fan
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
4
|
Zhang XM, Han LW, Zhang SS, Li XB, He QX, Han J, Wang XM, Liu KC. Targeted discovery and identification of novel nucleoside biomarkers in Apostichopus japonicus viscera using metabonomics. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 38:203-217. [PMID: 30588871 DOI: 10.1080/15257770.2018.1514121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, we investigated the metabonomic profiles of Apostichopus japonicus using an LC-MS-based method in conjunction with multivariate data analysis. Based on the PLS-DA model, 85 differential metabolites (VIP value >1.0) were obtained from viscera and body wall samples. The MS/MS and NMR experiments were used for the qualitative identification of the characteristic peaks. Sphingoid-based nucleoside analogues were the main components in Chinese A. japonicus viscera. Our findings demonstrate that A. japonicus viscera contain a large number of compounds that may have applications as nutraceuticals or pharmaceuticals.
Collapse
Affiliation(s)
- Xuan-Ming Zhang
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Li-Wen Han
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Shan-Shan Zhang
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Xiao-Bin Li
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Qiu-Xia He
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Jian Han
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Xi-Min Wang
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| | - Ke-Chun Liu
- a Key Laboratory for Drug Screening Technology, Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong , P.R. China
| |
Collapse
|
5
|
Trinel M, Jullian V, Le Lamer AC, Mhamdi I, Mejia K, Castillo D, Cabanillas BJ, Fabre N. Profiling of Hura crepitans L. latex by ultra-high-performance liquid chromatography/atmospheric pressure chemical ionisation linear ion trap Orbitrap mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:627-638. [PMID: 30019471 DOI: 10.1002/pca.2776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The phytochemistry of the latex of Hura crepitans L. (Euphorbiaceae), a widespread tree in the Amazonian forest having many uses, is little known. Only huratoxin, a daphnane diterpene orthoester, has been described despite the high pharmacological potential of this kind of compounds. Glucosphingolipids (cerebrosides) are also known to be distributed in Euphorbiaceae latexes. OBJECTIVE To tentatively identify daphnanes diterpenes and cerebrosides in the latex of H. crepitans. METHODS An ethanolic extract of the lyophilised latex of H. crepitans was analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with positive and negative atmospheric pressure chemical ionisation high-resolution mass spectrometry (APCI-HRMS) method using a quadrupole/linear ion trap/Orbitrap (LTQ-Orbitrap). Tandem mass spectrometry (MS/MS) spectra were recorded by two different fragmentation modes: collision induced dissociation (CID) and higher-energy collisional dissociation (HCD). RESULTS The analysis of CID- and HCD-MS/MS spectra allowed to propose fragmentation patterns for daphnane esters and cerebrosides and highlight diagnostic ions in positive and negative ion modes. A total of 34 compounds including 24 daphnane esters and 10 cerebrosides have been tentatively annotated. Among them, 17 daphnane diterpenes bearing one or two acyl chains are new compounds and the cerebrosides are described in the genus Hura for the first time. CONCLUSION This study revealed the chemical constituents of the latex of H. crepitans and particularly its richness and chemical diversity in daphnane diterpenes, more frequently encountered in the species of Thymelaeaceae.
Collapse
Affiliation(s)
- Manon Trinel
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Valérie Jullian
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
- Institut de recherche pour le Développement (IRD), UMR 152, Pharma Dev, Mission IRD, Lima, Peru
| | | | - Icram Mhamdi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | | | | | - Nicolas Fabre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|