1
|
Screening for Health-Promoting Fatty Acids in Ascidians and Seaweeds Grown under the Influence of Fish Farming Activities. Mar Drugs 2021; 19:md19080469. [PMID: 34436308 PMCID: PMC8400344 DOI: 10.3390/md19080469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to contrast the fatty acid (FA) profile of ascidians (Ascidiacea) and seaweeds (sea lettuce, Ulva spp. and bladderwrack, Fucus sp.) occurring in a coastal lagoon with versus without the influence of organic-rich effluents from fish farming activities. Our results revealed that ascidians and seaweeds from these contrasting environments displayed significant differences in their FA profiles. The n-3/n-6 ratio of Ascidiacea was lower under the influence of fish farming conditions, likely a consequence of the growing level of terrestrial-based ingredients rich on n-6 FA used in the formulation of aquafeeds. Unsurprisingly, these specimens also displayed significantly higher levels of 18:1(n-7+n-9) and 18:2n-6, as these combined accounted for more than 50% of the total pool of FAs present in formulated aquafeeds. The dissimilarities recorded in the FAs of seaweeds from these different environments were less marked (≈5%), with these being more pronounced in the FA classes of the brown seaweed Fucus sp. (namely PUFA). Overall, even under the influence of organic-rich effluents from fish farming activities, ascidians and seaweeds are a valuable source of health-promoting FAs, which confirms their potential for sustainable farming practices, such as integrated multi-trophic aquaculture.
Collapse
|
2
|
Hou Q, Huang Y, Jiang L, Zhong K, Huang Y, Gao H, Bu Q. Evaluation of lipid profiles in three species of ascidians using UPLC-ESI-Q-TOF-MS-based lipidomic study. Food Res Int 2021; 146:110454. [PMID: 34119246 DOI: 10.1016/j.foodres.2021.110454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Ascidians are excellent, yet underused, marine sources of unique bioactive compounds of high nutritive content. However, reports regarding the lipid composition of ascidians are rare. In this study, using ultra-high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, we aimed to characterize the lipid profile of the tunics and inner body tissues of three species of ascidians, including Ciona intestinalis, Halocynthia roretzi, and Styela clava. We identified over 245 molecular species from 13 major lipid subclasses; glycerophospholipids (GP) and glycerolipids were the dominant lipid components in these three ascidian species (accounted for 66.30-90.60% of total lipids). Importantly, GP enriched in polyunsaturated fatty acids mainly existed in the inner body tissues of ascidians, which accounted for 18.17-32.47% of total lipids. Considering the high level of GP, we proposed that ascidians can be potentially used as health-promoting food for humans.
Collapse
Affiliation(s)
- Qing Hou
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuting Huang
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qian Bu
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Utermann C, Blümel M, Busch K, Buedenbender L, Lin Y, Haltli BA, Kerr RG, Briski E, Hentschel U, Tasdemir D. Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms 2020; 8:microorganisms8122022. [PMID: 33348696 PMCID: PMC7767289 DOI: 10.3390/microorganisms8122022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island (PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order to gain first insights into so far unexplored factors that may contribute to the invasiveness of C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions (Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics revealed clear location- and tissue-specific patterns showing that biogeography and the sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated in the global ascidian metabolome, of which 18 were only detected in the invasive PEI population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study provides a basis for future studies on factors underlying the global invasiveness of Ciona species.
Collapse
Affiliation(s)
- Caroline Utermann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Kathrin Busch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
| | - Larissa Buedenbender
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Yaping Lin
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China
| | - Bradley A. Haltli
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Elizabeta Briski
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
| | - Ute Hentschel
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
4
|
Li C, Li X, Huang Q, Zhuo Y, Xu B, Wang Z. Changes in the phospholipid molecular species in water-boiled salted duck during processing based on shotgun lipidomics. Food Res Int 2020; 132:109064. [DOI: 10.1016/j.foodres.2020.109064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
|
5
|
Li C, Li X, Huang Q, Zhou Y, Xu B, Wang Z. Influence of Salt Content Used for Dry-Curing on Lipidomic Profiles during the Processing of Water-Boiled Salted Duck. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4017-4026. [PMID: 32153185 DOI: 10.1021/acs.jafc.0c01513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper focuses on the effect of dry-cured salt content on lipidomic profiles during the processing of water-boiled salted duck (WSD). The composition of the molecular species of individual phospholipids (PLs) in raw duck meat was identified by shotgun lipidomics, and the changes in the PLs during processing were analyzed with different contents of dry-cured salt (a 4% low-salt group, a 6% medium-salt group, and an 8% high-salt group). In total, 100 molecular species of phospholipids were determined in raw meat, while 122 species were identified during manufacturing processing. We further found that the amount of dry-cured salt had a great influence on 12 phospholipid molecular species, which could be used as markers to distinguish the treatment groups with different amounts of dry-cured salt. A lower dry-cured salt content (less than 6%) not only had a significant effect on the total PL content but also promoted the degradation of individual PLs (especially those containing unsaturated fatty acids).
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China
| | - Xinfu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China
| | - Qianli Huang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - You Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Baocai Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Chen Q, Wang X, Cong P, Liu Y, Wang Y, Xu J, Xue C. Mechanism of Phospholipid Hydrolysis for Oyster Crassostrea plicatula
Phospholipids During Storage Using Shotgun Lipidomics. Lipids 2017; 52:1045-1058. [DOI: 10.1007/s11745-017-4305-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Qinsheng Chen
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| | - Xincen Wang
- ; College of Tea and Food Science; Wuyi University; No. 16, Wu Yi Avenue Wuyishan Fujian Province 354300 China
| | - Peixu Cong
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| | - Yanjun Liu
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| | - Yuming Wang
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| | - Jie Xu
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| | - Changhu Xue
- ; College of Food Science and Engineering; Ocean University of China; No. 5, Yu Shan Road Qingdao Shandong Province 266003 China
| |
Collapse
|
7
|
Chlorella sorokiniana Extract Improves Short-Term Memory in Rats. Molecules 2016; 21:molecules21101311. [PMID: 27689989 PMCID: PMC6274193 DOI: 10.3390/molecules21101311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.
Collapse
|