1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Huang C, Liu Z, Huang W, Li L, Ye Y. Fabrication, characterization, and purification of nutraceutical diacylglycerol components from Camellia oil. J Food Sci 2022; 87:3856-3871. [PMID: 35904270 DOI: 10.1111/1750-3841.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Converting triacylgycerols (TAGs) from edible oils and fats into structured diacylglycerols (DAGs) is meaningful for reducing obesity. Camellia oil, rich in linoleic acid, has the potential to form structured linoleic acid-1,3-diacylglycerol (LA-1,3-DAG) nutrients in the industry. In this research, the physicochemical properties of modified Camellia oil (MCO) by enzymatic esterification were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), Differential Scanning Calorimetry (DSC), High Performance Liquid Chromatography-Evaporative Light Scattering Detection (HPLC-ELSD), and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). The relationship between reaction conditions and the DAG compositions is disclosed using multiple factors. It is found that high constituents of DAG increase the melting and crystallization temperature of MCO, lipase Novozym 435 gives the best yield of targeted nutrients (DAG, 1,3-DAG, LA-DAG), and the mixture of lipases, Lipozyme TL IM and Lipozyme RM IM, shows a synergistic effect in the synthetic process of DAG. Subsequently, MCO containing 65.4% DAG, 54.7% LA-DAG, and 47.6% 1,3-DAG content at optimal conditions (2% enzyme dosage, 4 h reaction time, 2.4:1 substrate molar ratio, 25.8% t-butanol as solvent, 60°C temperature) has been obtained and purified using silica column to obtain the final DAG oil containing 96.1% DAG, 64.7% 1,3-DAG, and 78.4% LA-DAG. High constituents of structured DAG oil rich in LA-1,3-DAG can be obtained by enzymatic esterification for industrial production.
Collapse
Affiliation(s)
- Chuanqing Huang
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zeyu Liu
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Wenqian Huang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lu Li
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yong Ye
- The Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.,Forestry Department, Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
3
|
Lu H, Guo T, Fan Y, Deng Z, Luo T, Li H. Effects of diacylglycerol and triacylglycerol from peanut oil and coconut oil on lipid metabolism in mice. J Food Sci 2020; 85:1907-1914. [PMID: 32421231 DOI: 10.1111/1750-3841.15159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Different chain lengths diacylglycerols (DAG) (long- and medium-chain) were synthesized from peanut and coconut oils. The effects of DAG with different chain lengths on body fat, blood lipids, and lipid metabolism-related enzymes in the liver and adipose tissue of C57BL/6J mice were investigated. Compared to peanut and coconut oils containing triacylglycerol (TAG), DAG-rich oils can significantly reduce the body weight, kidney weight, serum triglyceride (TG) content, hepatic fatty acid synthase (FAS), and Acetyl-CoA carboxylase (ACC) enzyme levels (p < 0.05) in C57BL/6J mice. Therefore, the effect of coconut oil DAG on improving body fat metabolism was probably due to the impact of DAG. Meanwhile, the body weight and serum TG content in coconut oil DAG group were lower than those in peanut oil DAG group. In addition, the spleen weight, hepatic ACC, and lipoprotein lipase (LPL) enzymes in coconut oil DAG group (0.07 ± 0.01 g, 2.08 ± 0.42 ng/mg pro, and 18.44 ± 5.23 ng/mg pro, respectively) were significantly lower than those in peanut oil DAG group. Although coconut oil DAG and peanut oil DAG have different fatty acid compositions, their effects on lipid metabolism showed no significant changes. Coconut oil DAG (peanut oil DAG) showed the improved lipid metabolism than that of coconut oil (peanut oil), which was probably due to the effect of DAG. PRACTICAL APPLICATION: Peanut and coconut oils are common edible oils. The oil containing DAG synthesized decreased the body weight and lipid accumulation in mice. Coconut oil is rich in medium-chain fatty acids, while peanut oil mainly consists of long-chain fatty acids. Due to the different contents of fatty acids, the synthesized structural lipids have different effects on lipid metabolism. Medium-chain triglycerides were considered as agents to alleviate obesity.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Tingting Guo
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
4
|
Shin JA, Lee MY, Lee KT. Oxidation Stability of O/W Emulsion Prepared with Linolenic Acid Enriched Diacylglycerol. J Food Sci 2016; 81:C2373-C2380. [DOI: 10.1111/1750-3841.13421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jung-Ah Shin
- Dept. of Food Science and Technology; Chungnam National Univ; Daejeon 305-764 South Korea
| | - Mi-Young Lee
- Chungcheongnam-do Health and Environmental Research Inst; Daejeon 300-801 South Korea
| | - Ki-Teak Lee
- Dept. of Food Science and Technology; Chungnam National Univ; Daejeon 305-764 South Korea
| |
Collapse
|
5
|
Zhang N, Yang X, Fu J, Chen Q, Song Z, Wang Y. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System. J Oleo Sci 2016; 65:207-16. [DOI: 10.5650/jos.ess15241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ning Zhang
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery
| | - Xue Yang
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery
| | - Junning Fu
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery
| | - Qiong Chen
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery
| | - Ziliang Song
- Alberta Innovates Phytola Centre, Department of Agricultural, Food, and Nutritional Science, University of Alberta
| | - Yong Wang
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery
| |
Collapse
|
6
|
Zou XG, Hu JN, Zhao ML, Zhu XM, Li HY, Liu XR, Liu R, Deng ZY. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10594-10603. [PMID: 25298236 DOI: 10.1021/jf503691p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.
Collapse
Affiliation(s)
- Xian-Guo Zou
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study and ‡College of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lipase-Catalyzed Preparation of Diacylglycerol-Enriched Oil from High-Acid Rice Bran Oil in Solvent-Free System. Appl Biochem Biotechnol 2012; 168:364-74. [DOI: 10.1007/s12010-012-9780-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 06/13/2012] [Indexed: 10/27/2022]
|
8
|
Preparation of Diacylglycerol-Enriched Oil from Free Fatty Acids Using Lecitase Ultra-Catalyzed Esterification. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1821-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Miklos R, Xu X, Lametsch R. Application of pork fat diacylglycerols in meat emulsions. Meat Sci 2011; 87:202-5. [DOI: 10.1016/j.meatsci.2010.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/21/2010] [Accepted: 10/11/2010] [Indexed: 11/24/2022]
|
10
|
Zhu XM, Hu JN, Shin JA, Li D, Jin J, Adhikari P, Akoh CC, Lee JH, Choi SW, Lee KT. Enrichment of pinolenic acid at thesn-2 position of triacylglycerol molecules through lipase-catalyzed reaction. Int J Food Sci Nutr 2009; 61:138-48. [DOI: 10.3109/09637480903348106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|