Lin MC, Lu CP, Cheng YR, Lin YF, Lin CS, Lin G. Inhibition or activation of Pseudomonas species lipase by 1,2-ethylene-di-N-alkylcarbamates in detergents.
Chem Phys Lipids 2007;
146:85-93. [PMID:
17274971 DOI:
10.1016/j.chemphyslip.2006.12.005]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/06/2006] [Accepted: 12/22/2006] [Indexed: 11/17/2022]
Abstract
1,2-Ethylene-di-N-n-propylcarbamate (1) is characterized as an essential activator of Pseudomonas species lipase while 1,2-ethylene-di-N-n-butyl-, t-butyl-, n-heptyl-, and n-octyl-carbamates (2-5) are characterized as the pseudo substrate inhibitors of the enzyme in the presence of the detergent taurocholate or triton X-100. The inhibition and activation reactions are more sensitive in taurocholate than in triton X-100. From CD studies, the enzyme changes conformations in the presence of the detergent and further alters conformations by addition of the carbamate activator or inhibitor into the enzyme-detergent adduct. Therefore, this study suggests that the conformational change of lipase during interfacial activation is a continuous process to expose the active site of the enzyme to substrate. From 600 MHz (1)H NMR studies, the conformations of the alpha- and beta-methylene moieties of the activator 1,2-ethylene-di-N-n-propylcarbamate in the presence of substrate change after adding taurocholate into the mixture, and the conformations of the beta-methylene moieties of the inhibitor 1,2-ethylene-di-N-n-butylcarbamate in the presence of substrate alter after adding taurocholate into the mixture.
Collapse