1
|
Bhandari S, Bates PD. Triacylglycerol remodeling in Physaria fendleri indicates oil accumulation is dynamic and not a metabolic endpoint. PLANT PHYSIOLOGY 2021; 187:799-815. [PMID: 34608961 PMCID: PMC8491037 DOI: 10.1093/plphys/kiab294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2021] [Indexed: 05/26/2023]
Abstract
Oilseed plants accumulate triacylglycerol (TAG) up to 80% of seed weight with the TAG fatty acid composition determining its nutritional value or use in the biofuel or chemical industries. Two major pathways for production of diacylglycerol (DAG), the immediate precursor to TAG, have been identified in plants: de novo DAG synthesis and conversion of the membrane lipid phosphatidylcholine (PC) to DAG, with each pathway producing distinct TAG compositions. However, neither pathway fits with previous biochemical and transcriptomic results from developing Physaria fendleri seeds for accumulation of TAG containing >60% lesquerolic acid (an unusual 20 carbon hydroxylated fatty acid), which accumulates at only the sn-1 and sn-3 positions of TAG. Isotopic tracing of developing P. fendleri seed lipid metabolism identified that PC-derived DAG is utilized to initially produce TAG with only one lesquerolic acid. Subsequently a nonhydroxylated fatty acid is removed from TAG (transiently reproducing DAG) and a second lesquerolic acid is incorporated. Thus, a dynamic TAG remodeling process involving anabolic and catabolic reactions controls the final TAG fatty acid composition. Reinterpretation of P. fendleri transcriptomic data identified potential genes involved in TAG remodeling that could provide a new approach for oilseed engineering by altering oil fatty acid composition after initial TAG synthesis; and the comparison of current results to that of related Brassicaceae species in the literature suggests the possibility of TAG remodeling involved in incorporation of very long-chain fatty acids into the TAG sn-1 position in various plants.
Collapse
Affiliation(s)
- Sajina Bhandari
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Philip D. Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
2
|
Chen GQ, Johnson K, Nazarenus TJ, Ponciano G, Morales E, Cahoon EB. Genetic Engineering of Lesquerella with Increased Ricinoleic Acid Content in Seed Oil. PLANTS 2021; 10:plants10061093. [PMID: 34072473 PMCID: PMC8230273 DOI: 10.3390/plants10061093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023]
Abstract
Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but it is also used by fatty acid desaturase 2 (FAD2) and FAD3 to sequentially produce linoleic and linolenic acids. To develop lesquerella that produces 18:1OH-rich seed oils such as castor, RNA interference sequences targeting KCS18, FAD2 and FAD3 were introduced to lesquerella to suppress the elongation and desaturation steps. Seeds from transgenic lines had increased 18:1OH to 1.1-26.6% compared with that of 0.4-0.6% in wild-type (WT) seeds. Multiple lines had reduced 18:1OH levels in the T2 generation, including a top line with 18:1OH reduced from 26.7% to 19%. Transgenic lines also accumulated more 18:1 than that of WT, indicating that 18:1 is not efficiently used for 18:1OH synthesis and accumulation. Factors limiting 18:1OH accumulation and new targets for further increasing 18:1OH production are discussed. Our results provide insights into complex mechanisms of oil biosynthesis in lesquerella and show the biotechnological potential to tailor lesquerella seeds to produce castor-like industrial oil functionality.
Collapse
Affiliation(s)
- Grace Q. Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.J.); (G.P.); (E.M.)
- Correspondence:
| | - Kumiko Johnson
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.J.); (G.P.); (E.M.)
| | - Tara J. Nazarenus
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.J.N.); (E.B.C.)
| | - Grisel Ponciano
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.J.); (G.P.); (E.M.)
| | - Eva Morales
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.J.); (G.P.); (E.M.)
| | - Edgar B. Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.J.N.); (E.B.C.)
| |
Collapse
|
3
|
Brejchova K, Balas L, Paluchova V, Brezinova M, Durand T, Kuda O. Understanding FAHFAs: From structure to metabolic regulation. Prog Lipid Res 2020; 79:101053. [PMID: 32735891 DOI: 10.1016/j.plipres.2020.101053] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 01/01/2023]
Abstract
The discovery of branched fatty acid esters of hydroxy fatty acids (FAHFAs) in humans draw attention of many researches to their biological effects. Although FAHFAs were originally discovered in insects and plants, their introduction into the mammalian realm opened new horizons in bioactive lipid research. Hundreds of isomers from different families have been identified so far and their role in (patho) physiological processes is currently being explored. The family of palmitic acid esters of hydroxy stearic acids (PAHSAs), especially 5-PAHSA and 9-PAHSA regioisomers, stands out in the crowd of other FAHFAs for their anti-inflammatory and anti-diabetic effects. Beneficial effects of PAHSAs have been linked to metabolic disorders such as type 1 and type 2 diabetes, colitis, and chronic inflammation. Besides PAHSAs, a growing family of polyunsaturated FAHFAs exerts mainly immunomodulatory effects and biological roles of many other FAHFAs remain currently unknown. Therefore, FAHFAs represent unique lipid messengers capable of affecting many immunometabolic processes. The objective of this review is to summarize the knowledge concerning the diversity of FAHFAs, nomenclature, and their analysis and detection. Special attention is paid to the total syntheses of FAHFAs, optimal strategies, and to the formation of the stereocenter required for optically active molecules. Biosynthetic pathways of saturated and polyunsaturated FAHFAs in mammals and plants are reviewed together with their metabolism and degradation. Moreover, an overview of biological effects of branched FAHFAs is provided and many unanswered questions regarding FAHFAs are discussed.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Veronika Paluchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Marie Brezinova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
4
|
Regiobiochemical analysis reveals the role of castor LPAT2 in the accumulation of hydroxy fatty acids in transgenic lesquerella seeds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Kotapati HK, Bates PD. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122099. [DOI: 10.1016/j.jchromb.2020.122099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
|
6
|
Hathwaik U, Lin JT, McMahan C. Molecular species of triacylglycerols in the rubber particles of Parthenium argentatum and Hevea brasiliensis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Xia W, Budge SM. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Compr Rev Food Sci Food Saf 2017; 16:735-758. [PMID: 33371569 DOI: 10.1111/1541-4337.12276] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
Lipid oxidation can lead to flavor and safety issues in fat-containing foods. In order to measure the extent of lipid oxidation, hydroperoxides and their scission products are normally targeted for analytical purposes. In recent years, the formation of rarely monitored oxygenated products, including epoxides, alcohols, and ketones, has also raised concerns. These products are thought to form from alternative pathways that compete with chain scissions, and should not be neglected. In this review, a number of instrumental techniques and approaches to determine epoxides, alcohols, and ketones are discussed, with a focus on their selectivity and sensitivity in applications to food lipids and oils. Special attention is given to methods employing gas chromatography (GC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR). For characterization purposes, GC-mass spectrometry (GC-MS) provides valuable information regarding the structures of individual oxygenated fatty acids, typically as methyl esters, isolated from oxygenated triacylglycerols (TAGs), while the use of liquid chromatography-MS (LC-MS) techniques allows analysis of intact oxygenated TAGs and offers information about the position of the oxygenated acyl chain on the glycerol backbone. For quantitative purposes, traditional chromatography methods have exhibited excellent sensitivity, while spectroscopic methods, including NMR, are superior to chromatography for their rapid analytical cycles. Future studies should focus on the development of a routine quantitative method that is both selective and sensitive.
Collapse
Affiliation(s)
- Wei Xia
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| | - Suzanne M Budge
- Dept. of Process Engineering and Applied Science, Dalhousie Univ., Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
8
|
Lin JT, Chen GQ. Structural characteristics of the molecular species of tetraacylglycerols in lesquerella (Physaria fendleri) oil elucidated by mass spectrometry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hou CT, Lin JT, Dulay RMR, Ray K. Identification of the molecular species of acylglycerols containing hydroxy fatty acids in wild edible mushroom Ganoderma lucidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Hou CT, Lin JT, Dulay RMR, Ray K. Identification of molecular species of acylglycerols of Philippine wild edible mushroom, Ganoderma lucidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:322-348. [PMID: 26991237 DOI: 10.1111/tpj.13163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jinjie Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | | | - Kathleen McGlew
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas A Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Matt Larson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Ana P Alonso
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Ratios of Regioisomers of the Molecular Species of Triacylglycerols in Lesquerella (Physaria fendleri) Oil Estimated by Mass Spectrometry. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2769-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|