1
|
Chen L, Gao Y, He M, Liu Y, Teng F, Li Y. Magnetic nanoparticles-immobilized phospholipase LM and phospholipase 3G: Preparation, characterization, and application on soybean crude oil degumming. Int J Biol Macromol 2024; 279:135368. [PMID: 39243566 DOI: 10.1016/j.ijbiomac.2024.135368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Immobilization of enzymes improves their stability and recoverability and is therefore crucial for scientific research and industrial applications. In this study, phospholipase LM (PLLM) and phospholipase 3G (PL3G) were immobilized using Fe3O4@SiO2@CS-COOH polycarboxylated magnetic nanoparticles (MNPs-COOH) as carriers and then used for degumming soybean crude oil. The immobilization rates and relative enzyme activities of these immobilized phospholipases were evaluated to determine the optimal immobilization parameters. The enzyme activities of PLLM-MNPs-COOH and PL3G-MNPs-COOH were 2830.87 and 1162.25 U/g, respectively. Enzymatic properties of the free and immobilized enzymes were compared. Both immobilized phospholipases exhibited higher condition tolerance and stability after immobilization. After 30-day storage at 4 °C, both immobilized phospholipases retained approximately 1.3 times the residual activity of the corresponding free phospholipases. When the degumming conditions were optimized, the residual phosphorus contents of the PLLM-MNPs-COOH- and PL3G-MNPs-COOH-degummed oils were 4.91 and 7.41 mg/kg, respectively, which were consistent with the safety standards for oil products. After 6 cycles, PLLM-MNPs-COOH and PL3G-MNPs-COOH continued to preserve 71.88 % and 70.00 % of their initial activities, respectively. The immobilized phospholipases are thus suitable for degumming soybean crude oil, and the mixed enzymes exhibited better degumming potential.
Collapse
Affiliation(s)
- Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yiting Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Prokhorov Y, Pérez-Robles JF, Sampieri-Moran JM, García-Casillas PE, Paul S, García HS, Luna-Bárcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug's bioavailability. Colloids Surf B Biointerfaces 2024; 245:114291. [PMID: 39368424 DOI: 10.1016/j.colsurfb.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Betulinic acid (BA) is a natural compound with significant potential for treating various diseases, including cancer and AIDS, and possesses additional anti-inflammatory and antibacterial properties. However, its clinical application is limited because of its low solubility in water, which impairs its distribution within the body. To overcome this challenge, nanoemulsions have been developed to improve the bioavailability of such poorly soluble drugs. This study investigated modified phosphatidylcholine (PC), where some fatty acids were replaced with conjugated linoleic acid (CLA) to stabilize BA nanoemulsions. The modified PC was used to prepare nanoemulsions with droplet sizes of up to 45 nanometers. These nanoemulsions maintained stability for 60 days at room temperature (25°C±2°C) and under refrigeration (5°C±1°C), with no signs of instability. Nanoemulsions stabilized with CLA-modified PC achieved a higher drug encapsulation rate (93.5±4.3 %) than those using natural PC (82.8±4.2 %). In an in vivo model, both nanoemulsion formulations significantly increased BA absorption, with CLA-modified PC enhancing absorption by 21.3±1.3 times and natural PC by 20±2.3 times compared to the free drug. This suggests that nanoemulsions with modified PC could improve the stability and efficacy of BA in clinical applications.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico
| | - Laura R Ochoa-Rodríguez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Yevgen Prokhorov
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Juan Francisco Pérez-Robles
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico
| | - Perla Elvia García-Casillas
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Coahuila 25294, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., San Pablo, Querétaro CP 76130, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico.
| |
Collapse
|
3
|
Zhou W, Peng Y, Wu Z, Zhang W, Cong Y. Study on the Frying Performance Evaluation of Refined Soybean Oil after PLC Enzymatic Degumming. Foods 2024; 13:275. [PMID: 38254576 PMCID: PMC10815329 DOI: 10.3390/foods13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is known that phospholipase C (PLC) enzymatic degumming can hydrolyze phospholipids into diacylglycerol (DAG), which improves the efficiency of oil processing. However, it is unclear whether the presence of DAG and the use of enzymes affect the performance of the oil. This paper evaluated the frying performance of PLC-degummed refined soybean oil. Following the chicken wings and potato chips frying trials, results revealed that after 30 cycles of frying, free fatty acid (FFA) levels were 0.22% and 0.21%, with total polar compounds (TPC) at 23.75% and 24.00%, and peroxide value (PV) levels were 5.90 meq/kg and 6.45 meq/kg, respectively. Overall, PLC-degummed refined soybean oil showed almost the same frying properties as traditional water-degummed refined oil in terms of FFA, PV, TPC, polymer content, viscosity, color, foaming of frying oils, and appearance of foods. Moreover, FFA, TPC, polymer content, foaming, and color showed significant positive correlations with each other (p < 0.05) in soybean oil intermittent frying processing.
Collapse
Affiliation(s)
- Wenting Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
| | - Yuxin Peng
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
| | - Zongyuan Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weinong Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanxia Cong
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Z.); (Y.P.); (Z.W.); (W.Z.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
The enzymatic modification of phospholipids improves their surface-active properties and the formation of nanoemulsions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Hou Z, Jiang S, Cao X, Cao L, Pang M, Yang P, Jiang S. Performances of phospholipids and changes of antioxidant capacity from rapeseed oil during enzymatic degumming. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Zhang L, Akhymetkan S, Chen J, Dong Y, Gao Y, Yu X. Convenient method for the simultaneous production of high-quality fragrant rapeseed oil and recovery of phospholipids via electrolyte degumming. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Chen W, Kou M, Li L, Li B, Huang J, Fan S, Xu L, Zhong N. Immobilization of Lecitase<sup>®</sup> Ultra onto the Organic Modified SBA-15 for Soybean Oil Degumming. J Oleo Sci 2022; 71:721-733. [DOI: 10.5650/jos.ess21353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenyi Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Maomao Kou
- School of Food Science, Guangdong Pharmaceutical University
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University
| | | | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University
| |
Collapse
|
8
|
Weining W, Tang H, Chen Y, Liu J, Yu D, Yang F, Elfalleh W. Chemically modified magnetic immobilized phospholipase A 1 and its application for soybean oil degumming. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:317-326. [PMID: 35068576 PMCID: PMC8758861 DOI: 10.1007/s13197-021-05017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 01/03/2023]
Abstract
In this paper, the free Phospholipase A1 (PLA1) was immobilized on a magnetic carrier. The average particle diameter of the magnetic carrier was 97 ± 1.3 nm, and the average particle diameter of the magnetically immobilized PLA1 was 105 nm ± 1.3 nm. The enzyme activity was 1940.5 U/g. The magnetic enzyme was chemically modified with formaldehyde, dextran-aldehyde, and dextran-aldehyde-glycine. The proportions of primary amino groups in the modified magnetic immobilized enzyme PLA1 were 0, 53.5% and 47.3%, respectively. The optimum pH of the enzyme after chemical modification was 6.5. When the system temperature was 60 °C, the magnetically immobilized PLA1 modified with dextran-aldehyde-glycine had the optimal activity and stability. This chemically modified magnetic immobilized PLA1 was applied to soybean oil degumming at 60 °C, 6.5 h (reaction time), and 0.10 mg/kg (enzyme dosage). The phosphorus content in the degummed oil was 9.2 mg/kg. The relative enzyme activity was 77.6% after 7 reuses which would be potentially advantageous for industrial applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s13197-021-05017-4).
Collapse
Affiliation(s)
- Wang Weining
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Honglin Tang
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Yan Chen
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Jingyang Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030 China
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, (LEEEP) LR18ES35, Ecole Nationale D’Ingénieurs de Gabès, Université de Gabès, 6072 Gabès, Tunisia
| |
Collapse
|
9
|
Rodrigues MS, Dos Passos RM, Pontes PVDA, Ferreira MC, Meirelles AJA, Stevens CV, Maximo GJ, Sampaio KA. Enzymatic Degumming of Rice Bran Oil Using Different Commercial Phospholipases and Their Cocktails. Life (Basel) 2021; 11:life11111197. [PMID: 34833073 PMCID: PMC8623573 DOI: 10.3390/life11111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Rice bran oil is a highly nutritious vegetable oil, as it is rich in tocols and γ-oryzanol. Degumming is the first step in the vegetable oil refining process, and its main objective is the removal of phospholipids or gums. In the present study, enzymatic degumming trials were performed on crude rice bran oil using the phospholipases PLA1, Purifine® PLC, their mixture (PLA1/PLC), and a cocktail known as Purifine® 3G. Enzymatic degumming applying 50 mg/kg of PLA1 for 120 min resulted in a residual phosphorus content of 10.4 mg/kg and an absolute free fatty acid increase of 0.30%. Enzymatic degumming applying 300 mg/kg of Purifine® PLC for 120 min at 60 °C resulted in a residual phosphorus content of 67 mg/kg and an absolute diacylglycerol increase of 0.41%. The mixture of phospholipases and the cocktail presented approximately 5 mg/kg of residual phosphorus content after the reaction times. For all degumming processes, the preservation of minor components such as tocols and γ-oryzanol were observed. These results indicate that the use of enzyme mixtures or their cocktails to attain low phosphorus content and high diacylglycerol/free fatty acid conversion during enzymatic degumming is a viable alternative.
Collapse
Affiliation(s)
- Mayara S. Rodrigues
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
| | - Rafaela M. Dos Passos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
| | - Paula V. de A. Pontes
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
| | | | - Antonio J. A. Meirelles
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
| | - Christian V. Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Guilherme J. Maximo
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
| | - Klicia A. Sampaio
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (M.S.R.); (R.M.D.P.); (P.V.d.A.P.); (A.J.A.M.); (G.J.M.)
- Correspondence:
| |
Collapse
|
10
|
Wang T, Cheng J, Wang N, Zhang X, Jiang L, Yu D, Wang L. Study on the stability of intermediates in the process of enzymatic hydrolysis of phosphatidic acid by phospholipase A1. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Nikolaeva T, Rietkerk T, Sein A, Dalgliesh R, Bouwman WG, Velichko E, Tian B, Van As H, van Duynhoven J. Impact of water degumming and enzymatic degumming on gum mesostructure formation in crude soybean oil. Food Chem 2020; 311:126017. [PMID: 31864184 DOI: 10.1016/j.foodchem.2019.126017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Phospholipid gum mesostructures formed in crude soybean oil after water degumming (WD) and enzymatic degumming (ED) were studied at a range of phospholipid and water concentrations. For ED, phospholipase C (PLC), phospholipase A2 (PLA2) and a mixture of phospholipases Purifine 3G (3G) were used. Both WD and ED resulted in lamellar liquid-crystalline phases, however, of different topology. The dependence of the bilayer spacings (as observed by SANS and SAXS) on the ratio between amount of water and amphiphilic lipids differed for WD and PLA2 ED vs PLC and 3G ED. This difference was also observed for dynamics at molecular scale as observed by time-domain (TD) NMR and attributed to partial incorporation of diglycerides and free fatty acids into gum bilayers after PLC and 3G ED. Feasibility of using TD-NMR relaxometry for quantification of the gum phase and estimation of degumming efficiency was demonstrated.
Collapse
Affiliation(s)
- Tatiana Nikolaeva
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; MAGNEtic Resonance Research FacilitY (MAGNEFY), Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Tim Rietkerk
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Arjen Sein
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | | | - Wim G Bouwman
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands
| | - Evgenii Velichko
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands
| | - Bei Tian
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; MAGNEtic Resonance Research FacilitY (MAGNEFY), Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; MAGNEtic Resonance Research FacilitY (MAGNEFY), Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
12
|
Yang P, Wu Y, Jiang S, Zheng Z, Hou Z, Mu D, Xiao W, Jiang S, Yang YH. Effective Expression of the Serratia marcescens Phospholipase A1 Gene in Escherichia coli BL21(DE3), Enzyme Characterization, and Crude Rapeseed Oil Degumming via a Free Enzyme Approach. Front Bioeng Biotechnol 2019; 7:272. [PMID: 31681748 PMCID: PMC6811509 DOI: 10.3389/fbioe.2019.00272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Crude oil degumming by phospholipid removal is crucial to guarantee oil quality. Phospholipase degumming could produce green vegetable oil by reducing energy consumption and protecting the environment. To develop a novel phospholipase for oil degumming, we cloned the Serratia marcescens outer membrane phospholipase A gene (OM-PLA1) and expressed its 33 KDa protein in engineered Escherichia coli BL21(DE3). OM-PLA1 activity reached 18.9 U mL-1 with the induction of 0.6 mM isopropyl β-D-1-thiogalactopyranoside for 4 h. The optimum temperature and pH were 50°C and 7.5, respectively. Mg2+, Ca2+, Co2+, and Mn2+ at 0.1 mM L-1 significantly increased OM-PLA1 activity. The kinetic equations of OM-PLA1 and Lecitase Ultra were y = 13.7x+0.74 (Km = 18.53 mM, Vmax = 1.35 mM min-1) and y = 24.42x+0.58 (Km = 42.1 mM, Vmax = 1.72 mM min-1), respectively. The phosphorus content decreased from 22.6 to 9.3 mg kg-1 with the addition of 15 units of free recombinant OM-PLA1 into 150 g of crude rapeseed oil. OM-PLA1 has the close degumming efficiency with Lecitase Ultra. The S. marcescens outer membrane phospholipase gene (OM-PLA1) possessed higher substrate affinity and catalytic efficiency than Lecitase Ultra. This study provides an alternative approach to achieve crude vegetable oil degumming with enzymatic technology.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yun Wu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, Hefei, China
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhigang Hou
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
13
|
Yu D, Yu C, Jiang Y, Zhang X, Yuan T, Wang L, Elfalleh W, Jiang L. Magnetic immobilisation of phospholipase C and its hydrolysis of phospholipids in crude soybean oil. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D. Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| | - C. Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| | - Y. Jiang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| | - X. Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| | - T. Yuan
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| | - L. Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China P.R
| | - W. Elfalleh
- Laboratoire Energie, Eau, Environnement et Procèdes (LEEEP), LR18ES35, Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès, 6072 Gabès, Tunisia
| | - L. Jiang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China P.R
| |
Collapse
|
14
|
Sampaio K, Zyaykina N, Uitterhaegen E, De Greyt W, Verhé R, de Almeida Meirelles A, Stevens C. Enzymatic degumming of corn oil using phospholipase C from a selected strain of Pichia pastoris. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Effect of Phospholipase A 1-Catalyzed Degumming on Oryzanol, Tocopherols, and Tocotrienols of Dewaxed Rice Bran Oil. J CHEM-NY 2019. [DOI: 10.1155/2019/1608750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of phospholipase A1-catalyzed degumming on the phosphorus content, the retention rate of oryzanol, and total tocopherols and tocotrienols of dewaxed rice bran oil was investigated with comparison to water degumming and citric acid degumming. The fatty acid composition of dewaxed rice bran oil was also studied by gas chromatography. The phosphorus content of dewaxed rice bran oil after phospholipase A1-catalyzed degumming could be decreased from 332.5 mg·kg−1 to 9.3 mg·kg−1 with the citric acid dosage of 0.10%, high shearing rate of 23000 rpm, chelation time of 60 min, NaOH dosage of 1.5 mole equivalent to the amount of citric acid, reaction temperature of 50°C, and total water dosage of 2.5%, while the phosphorus content of dewaxed rice bran oil after water and acid degumming was 120.5 mg·kg−1 and 66.4 mg·kg−1, respectively. The retention rate of oryzanol and total tocopherols and tocotrienols was 97.58% and 96.81% for phospholipase A1-catalyzed degumming, 91.44% and 85.98% for water degumming, and 92.85% and 87.75% for acid degumming. There was no obvious change in fatty acid composition. The results indicated that phospholipase A1-catalyzed degumming was an effective method since it could decrease the phosphorus content to the required level and provide high retention rate of oryzanol and total content of tocopherols and tocotrienols without obvious change of fatty acid composition.
Collapse
|
16
|
Abstract
The nanomagnetic carrier (Fe3O4@SiO2@p(GMA)) was prepared by atom transfer radical polymerization, and then, the free phospholipase C (PLC) was immobilized on it proved by the results of FT-IR analysis. The enzyme loading was 135.64 mg/g, the enzyme activity was 8560.7 U/g, the average particle size was 99.86 ± 0.80 nm, and the specific saturation magnetization was 16.00 ± 0.20 emu/g. PLC-Fe3O4@SiO2@p(GMA) showed the highest activities at the pH of 7.5, and tolerance temperature raised to 65°C in soybean lecithin emulsion. Enzymatic degumming with PLC-Fe3O4@SiO2@p(GMA) under the conditions of the enzyme dosage of 110 mg/kg, reaction temperature of 65°C, pH of 7.5, and reaction time of 2.5 h resulted in residual phosphorus of 64.7 mg/kg, 1,2-diacylglycerol (1,2-DAG) contents of 1.07%, and oil yield of 98.1%. Moreover, PLC-Fe3O4@SiO2@p(GMA) still possessed more than 80% of its initial activity after 5 cycles.
Collapse
|
17
|
Yang P, Jiang S, Wu Y, Hou Z, Zheng Z, Cao L, Du M, Jiang S. Recombinant Expression of Serratia marcescens Outer Membrane Phospholipase A (A1) in Pichia pastoris and Immobilization With Graphene Oxide-Based Fe 3O 4 Nanoparticles for Rapeseed Oil Degumming. Front Microbiol 2019; 10:334. [PMID: 30846983 PMCID: PMC6393389 DOI: 10.3389/fmicb.2019.00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Enzymatic degumming is an effective approach to produce nutritional, safe, and healthy refined oil. However, the high cost and low efficiency of phospholipase limit the application of enzymatic degumming. In this study, an 879 bp outer membrane phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h. The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600. A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50°C for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous recycling for the enzymatic degumming of rapeseed oil. This study provided an effective approach for the enzymatic degumming of crude vegetable oil by developing a novel phospholipase and improving the degumming technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
18
|
Goñi ML, Pacheco C, Constenla DT, Carelli AA. Solvent-free enzymatic hydrolysis of non-polar lipids in crude sunflower lecithin using phospholipase A1 (Lecitase® Ultra). BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1376662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- María Laura Goñi
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur – Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), Bahia Blanca, Argentina
- Investigación y Desarrollo en Tecnología Química (IDTQ – Grupo Vinculado a PLAPIQUI), Universidad Nacional de Córdoba – CONICET, Córdoba, Argentina
| | - Consuelo Pacheco
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur – Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), Bahia Blanca, Argentina
| | - Diana Teresita Constenla
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur – Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), Bahia Blanca, Argentina
| | - Amalia Antonia Carelli
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur – Consejo Nacional de Investigaciones Científicas y Técnicas (UNS-CONICET), Bahia Blanca, Argentina
| |
Collapse
|
19
|
Szydłowska-Czerniak A, Łaszewska A. Optimization of a soft degumming process of crude rapeseed oil—Changes in its antioxidant capacity. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
An Q, Wang F, Lan D, Khan FI, Durrani R, Yang B, Wang Y. Improving phospholipase activity of PLA
1
by protein engineering and its effects on oil degumming. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qun An
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Fanghua Wang
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Dongming Lan
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Faez Iqbal Khan
- School of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhouP. R. China
| | - Rabia Durrani
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Bo Yang
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Yonghua Wang
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
21
|
Ye Z, Qiao X, Luo Z, Hu C, Liu L, He D. Optimization and comparison of water degumming and phospholipase C degumming for rapeseed oil. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1182218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhan Ye
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Xue Qiao
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Zhi Luo
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Chuanrong Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Lingyi Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Dongping He
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| |
Collapse
|