1
|
Liu S, He M, Sun H, Wu Y, Jin W. 5-Hydroxytryptamine G-Protein-Coupled Receptor Family Genes: Key Players in Cancer Prognosis, Immune Regulation, and Therapeutic Response. Genes (Basel) 2024; 15:1541. [PMID: 39766808 PMCID: PMC11675146 DOI: 10.3390/genes15121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Firstly, 5-hydroxytryptamine G-protein-coupled receptors (HTGPCRs) are a family of 13 genes associated with cancer progression. Nevertheless, a comprehensive understanding of HTGPCRs in cancer remains largely lacking. METHOD We tested the gene expression levels and prognostic values for the HTGPCRs in relation to pan-cancer. A subsequent analysis examined the relationships among HTGPCR expression and clinical characteristics, immune subtypes, stemness scores, tumor microenvironments (TMEs), single-cell analyses, and drug sensitivity. RESULT A significant difference in HTGPCR expression was found between normal tissues and tumors. HTR1D/2C expressed higher levels in breast invasive carcinoma (BRCA), colon adenocarcinoma, and liver hepatocellular carcinoma. HTGPCR gene expression was correlated with prognosis in many cancers. HTR1D/2C were associated with poorer overall survival for head and neck squamous cell carcinoma. In addition, HTGPCR expression correlated significantly with the stemness scores of RNA and DNA, TMB, and MSI, as well as stromal and immune scores of pan-cancer patients. Additionally, the expression of HTR2A/2B/7 was correlated significantly with immune cells and immune checkpoint genes in a variety of cancers, such as BRCA, brain lower-grade glioma, and lung adenocarcinoma. Immune regulation and TME were both regulated by HTGPCRs. Using single-cell analysis, we found that the gene set of HTGPCRs correlated with many cancer-related functional states in retinoblastoma. Moreover, drug sensitivity and HTR4 were significantly correlated. Furthermore, we validated results in breast cancer and found knockdown of HTR1D inhibited breast cancer cell growth and metastasis. CONCLUSION As prognostic indicators, HTGPCRs hold considerable promise and offer insights into the therapeutic targets for malignancy.
Collapse
Affiliation(s)
- Simeng Liu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingang He
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Wu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
miR-23b-3p Inhibits the Oncogenicity of Colon Adenocarcinoma by Directly Targeting NFE2L3. JOURNAL OF ONCOLOGY 2021; 2021:8493225. [PMID: 34966429 PMCID: PMC8712119 DOI: 10.1155/2021/8493225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Background and Aims MicroR-23b-3p (miR-23b-3p) has been found to be abnormally expressed in a variety of malignant tumors and to play a role in tumor inhibition or promotion. However, the regulatory mechanism of miR-23b-3p in COAD remains unclear. The purpose of this study was to investigate the clinical significance of miR-23b-3p expression in COAD cells and to explore its role and regulatory mechanism in the growth of COAD. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure miR-23b-3p expression in COAD tissues and cell lines. After transfecting miR-23b-3p mimics into two human COAD cell lines (SW620 and LoVo), the cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) assays were used to detect cell proliferation, the Transwell assay was used to measure cell migration and invasion capacity, and flow cytometry was used to evaluate cell apoptosis in vitro. In addition, a luciferase reporter assay was used to determine whether miR-23b-3p targets NFE2L3. The downstream regulatory mechanisms of miR-23b-3p action in COAD cells were also investigated. For in vivo tumorigenesis assay, COAD cells stably overexpressing miR-23b-3p were injected subcutaneously into the flank of nude mice to obtain tumors. Results Significantly decreased expression of miR-23b-3p was detected in COAD tissues and cell lines. Exogenous miR-23b-3p expression inhibited cell proliferation, migration, and invasion and promoted cell apoptosis of COAD cells in vitro. Nuclear factor erythroid 2 like 3 (NFE2L3) was identified as a direct target gene of miR-23b-3p. In addition, reintroduction of NFE2L3 partially abolished the anticancer effects of miR-23b-3p on COAD cells. Furthermore, miR-23b-3p overexpression hindered the growth of COAD cells in vivo. Conclusion miR-23b-3p inhibited the oncogenicity of COAD cells in vitro and in vivo by directly targeting NFE2L3, suggesting the importance of the miR-23b-3p/NFE2L3 pathway in the development of COAD.
Collapse
|
3
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M. Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy. Biomedicines 2021; 9:biomedicines9050500. [PMID: 34063205 PMCID: PMC8147479 DOI: 10.3390/biomedicines9050500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations.
Collapse
Affiliation(s)
- Hend M. Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Said M. Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Maram H. Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
4
|
Wang N, Xu Y, Guo Q, Zhu C, Zhao W, Qian W, Zheng M. Effects of miR-132-3p on progress and epithelial mesenchymal transition of non-small cell lung cancer via regulating KLF7. J Thorac Dis 2021; 13:2426-2436. [PMID: 34012590 PMCID: PMC8107552 DOI: 10.21037/jtd-21-353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) often appear as oncogenes or tumor suppressor genes. The aim of this research was to examine miR-132-3p and Kruppel-like factor 7 (KLF7) effects in the development of non-small cell lung cancer (NSCLC). Methods We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine miR-132-3p expression in tissue specimens and 6 cells (A549, H1650, H292, H1299, H1944, BEAS-2b). Luciferase report forecasted the targeting relationship between miR-132-3p and KLF7. The expression of KLF7 and interstitial protein was determined by western blot. Proliferation test and Transwell assay were adopted for examining cell development. The Cell Counting Kit-8 (CCK-8) colorimetric method was used to observe the effects of miR-132-3p and KLF7 on the proliferation, metastasis, and invasion of NSCLC tumor cells. In order to determine whether the metastasis of NSCLC tumor cells was epithelial-mesenchymal transition (EMT)-mediated, supplementary experiments with E-cadherin and vimentin were performed. Results An increased expression of miR-132-3p was detected in NSCLC. Its mimic promoted the proliferation of tumor cells. As an immediate site of miR-132-3p, KLF7 was reversely adjusted via miR-132-3p and restrained the development of tumor cells in NSCLC, the effects of which were attenuated via KLF7 over-expression. Besides, the presence of EMT-related diversions was confirmed in NSCLC. Conclusions By targeting KLF7, miR-132-3p was capable of promoting the proceeding of NSCLC tumor cells. We discovered miR-132-3p/KLF7 route may exhibit curative target for NSCLC.
Collapse
Affiliation(s)
- Ning Wang
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Xu
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingkui Guo
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhu
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhao
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenliang Qian
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zheng
- Thoracic Surgery Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Targeting Cancer Stem Cells: A Strategy for Effective Eradication of Cancer. Cancers (Basel) 2019; 11:cancers11050732. [PMID: 31137841 PMCID: PMC6562442 DOI: 10.3390/cancers11050732] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of tumor cells with the ability to self-renew, differentiate, and initiate and maintain tumor growth, and they are considered to be the main drivers of intra- and inter-tumoral heterogeneity. While conventional chemotherapy can eradicate the majority of non-CSC tumor cells, CSCs are often drug-resistant, leading to tumor recurrence and metastasis. The heterogeneity of CSCs is the main challenge in developing CSC-targeting therapy; therefore, we and other investigators have focused on developing novel therapeutic strategies that combine conventional chemotherapy with inhibitors of CSC-regulating pathways. Encouraging preclinical findings have suggested that CSC pathway blockade can indeed enhance cellular sensitivity to non-targeted conventional therapy, and this work has led to several ongoing clinical trials of CSC pathway inhibitors. Our studies in bladder cancer and lung adenocarcinoma have demonstrated a crucial role of YAP1, a transcriptional regulator of genes that promote cell survival and proliferation, in regulating CSC phenotypes. Moreover, using cell lines and patient-derived xenograft models, we showed that inhibition of YAP1 enhances the efficacy of conventional therapies by attenuating CSC stemness features. In this review, we summarize the therapeutic strategies for targeting CSCs in several cancers and discuss the potential and challenges of the approach.
Collapse
|
6
|
Abstract
Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.
Collapse
|
7
|
Huang Y, Ni R, Wang J, Liu Y. Knockdown of lncRNA DLX6-AS1 inhibits cell proliferation, migration and invasion while promotes apoptosis by downregulating PRR11 expression and upregulating miR-144 in non-small cell lung cancer. Biomed Pharmacother 2018; 109:1851-1859. [PMID: 30551440 DOI: 10.1016/j.biopha.2018.09.151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) distal-less homeobox 6 antisense 1 (DLX6-AS1) was reported to be dysregulated in lung cancer. However, detailed roles of DLX6-AS1 in the pathogenesis of non-small cell lung cancer (NSCLC) were largely unknown. METHODS The expression of DLX6-AS1 was measured in NSCLC tissues and cells by quantitative real-time PCR (qRT-PCR). The abundance of proline rich 11 (PRR11) were detected by qRT-PCR and western blot, respectively. The effects of DLX6-AS1 and PRR11 on cell proliferation, migration, invasion and apoptosis were explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell and flow cytometry analysis, respectively. Luciferase reporter assay, qRT-PCR and western blot were performed to confirm the interaction between miR-144 and DLX6-AS1 or PRR11. Tumor xenograft assay was performed to verify the role of DLX6-AS1 in NSCLC in vivo. RESULTS DLX6-AS1 and PRR11 were elevated in NSCLC tissues and cells. DLX6-AS1 was positively correlated with PRR11 mRNA expression in NSCLC tissues. Knockdown of DLX6-AS1 and PRR11 significantly suppressed cell proliferation, migration and invasion and induced apoptosis in NSCLC cells, which was reversed by PRR11 overexpression. In addition, DLX6-AS1 and PRR11 were demonstrated to interact with microRNA-144 (miR-144) and DLX6-AS1 upregulated PRR11 expression by acting as a competing endogenous RNA (ceRNA) of miR-144 in NSCLC cells. Furthermore, DLX6-AS1 knockdown suppressed tumor growth in NSCLC in vivo by upregulating miR-144 and downregulating PRR11. CONCLUSION Knockdown of DLX6-AS1 inhibited cell proliferation, migration, invasion and promoted apoptosis by downregulating PRR11 expression and upregulating miR-144 in NSCLC.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Senile Respiratory and Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ran Ni
- Department Two of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Wang
- Department Two of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying Liu
- Department Five of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
8
|
Prognostic significance of S100A16 subcellular localization in lung adenocarcinoma. Hum Pathol 2018; 74:148-155. [DOI: 10.1016/j.humpath.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
|
9
|
Nakanishi T, Menju T, Nishikawa S, Takahashi K, Miyata R, Shikuma K, Sowa T, Imamura N, Hamaji M, Motoyama H, Hijiya K, Aoyama A, Sato T, Chen‐Yoshikawa TF, Sonobe M, Date H. The synergistic role of ATP-dependent drug efflux pump and focal adhesion signaling pathways in vinorelbine resistance in lung cancer. Cancer Med 2018; 7:408-419. [PMID: 29318780 PMCID: PMC5806107 DOI: 10.1002/cam4.1282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
The vinorelbine (VRB) plus cisplatin regimen is widely used to treat non-small cell lung cancer (NSCLC), but its cure rate is poor. Drug resistance is the primary driver of chemotherapeutic failure, and the causes of resistance remain unclear. By focusing on the focal adhesion (FA) pathway, we have highlighted a signaling pathway that promotes VRB resistance in lung cancer cells. First, we established VRB-resistant (VR) lung cancer cells (NCI-H1299 and A549) and examined its transcriptional changes, protein expressions, and activations. We treated VR cells by Src Family Kinase (SFK) inhibitors or gene silencing and examined cell viabilities. ATP-binding Cassette Sub-family B Member 1 (ABCB1) was highly expressed in VR cells. A pathway analysis and western blot analysis revealed the high expression of integrins β1 and β3 and the activation of FA pathway components, including Src family kinase (SFK) and AKT, in VR cells. SFK involvement in VRB resistance was confirmed by the recovery of VRB sensitivity in FYN knockdown A549 VR cells. Saracatinib, a dual inhibitor of SFK and ABCB1, had a synergistic effect with VRB in VR cells. In conclusion, ABCB1 is the primary cause of VRB resistance. Additionally, the FA pathway, particularly integrin, and SFK, are promising targets for VRB-resistant lung cancer. Further studies are needed to identify clinically applicable target drugs and biomarkers that will improve disease prognoses and predict therapeutic efficacies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenosine Triphosphate/pharmacology
- Adult
- Aged
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/metabolism
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- Female
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Focal Adhesions/pathology
- Follow-Up Studies
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Signal Transduction/drug effects
- Survival Rate
- Tumor Cells, Cultured
- Vinorelbine/pharmacology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Takao Nakanishi
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of Thoracic SurgeryKobe‐City Nishi‐Kobe Medical CenterKobeJapan
| | - Toshi Menju
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Koji Takahashi
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryo Miyata
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kei Shikuma
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Terumasa Sowa
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naoto Imamura
- Department of Thoracic SurgeryJapanese Red Cross Wakayama Medical CenterWakayamaJapan
| | - Masatsugu Hamaji
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideki Motoyama
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kyoko Hijiya
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiro Aoyama
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshihiko Sato
- Institute for Advancement of Clinical and Translational ScienceKyoto University HospitalKyotoJapan
| | | | - Makoto Sonobe
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Date
- Department of Thoracic SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
10
|
Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep 2017; 7:12317. [PMID: 28951614 PMCID: PMC5615065 DOI: 10.1038/s41598-017-12017-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022] Open
Abstract
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them “lung cancer organoids”. We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Collapse
|
11
|
Gao X, Dai M, Li Q, Wang Z, Lu Y, Song Z. HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer 2017; 8:501-510. [PMID: 28752530 PMCID: PMC5582513 DOI: 10.1111/1759-7714.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to explore the effects of HMGA2 on cell proliferation and metastases in lung cancer and its underlying mechanism. METHODS HMGA2 expression in lung cancer tissues and its association with overall survival were analyzed based on data from a public database. The roles of HMGA2 were validated via loss-of-function and gain-of-function experiments in vitro. HMGA2 regulation by microRNA-195 (miR-195) was validated by real time-PCR, Western blotting, and luciferase reporter assays. RESULTS HMGA2 was upregulated and associated with reduced overall survival in patients with lung adenocarcinoma. HMGA2 knockdown suppressed the proliferation and motility of H1299 cells, while HMGA2 ectopic expression in A549 cells increased cell proliferation and migration. HMGA2 affected cell apoptosis through caspase 3/9 and Bcl-2, and regulated epithelial-to-mesenchymal transition by targeting Twist 1. Moreover, miR-195 was found to directly target the 3' untranslated region of HMGA2 messenger RNA and suppress its expression in lung cancer. CONCLUSION This study demonstrated that HMGA2, regulated by miR-195, played important roles in proliferation, metastases, and epithelial-to-mesenchymal transition in lung cancer. HMGA2 might serve as a biomarker and potential therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Xiaotian Gao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Cardiac Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Dai
- Department of Cardiothoracic Surgery, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Qinglan Li
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhigang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yonglin Lu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, Wang T, Wang F, Sun C, Zhang X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One 2017; 12:e0171751. [PMID: 28199399 PMCID: PMC5310808 DOI: 10.1371/journal.pone.0171751] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingfeng Min
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Departments of Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingxiang Xu
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Yang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinchen Sun
- Department of Radiotherapy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Wang
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Changjiang Sun
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| | - Xizhi Zhang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| |
Collapse
|