1
|
Neto FS, Fernandes de Melo Neta MM, Sales MB, Silva de Oliveira FA, de Castro Bizerra V, Sanders Lopes AA, de Sousa Rios MA, Santos JCSD. Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers (Basel) 2023; 15:polym15092057. [PMID: 37177203 PMCID: PMC10181460 DOI: 10.3390/polym15092057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lignocellulosic biomasses are used in several applications, such as energy production, materials, and biofuels. These applications result in increased consumption and waste generation of these materials. However, alternative uses are being developed to solve the problem of waste generated in the industry. Thus, research is carried out to ensure the use of these biomasses as enzymatic support. These surveys can be accompanied using the advanced bibliometric analysis tool that can help determine the biomasses used and other perspectives on the subject. With this, the present work aims to carry out an advanced bibliometric analysis approaching the main studies related to the use of lignocellulosic biomass as an enzymatic support. This study will be carried out by highlighting the main countries/regions that carry out productions, research areas that involve the theme, and future trends in these areas. It was observed that there is a cooperation between China, USA, and India, where China holds 28.07% of publications in this area, being the country with the greatest impact in the area. Finally, it is possible to define that the use of these new supports is a trend in the field of biotechnology.
Collapse
Affiliation(s)
- Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60440-554, Brazil
| | | | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Francisco Arisson Silva de Oliveira
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Ada Amélia Sanders Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Maria Alexsandra de Sousa Rios
- Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, Bloco 714, Fortaleza 60440-554, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60440-554, Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| |
Collapse
|
2
|
Wang M, Wang L, Lyu X, Hua X, Goddard JM, Yang R. Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnol Adv 2022; 60:108021. [PMID: 35901861 DOI: 10.1016/j.biotechadv.2022.108021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Lactulose, a semisynthetic nondigestive disaccharide with versatile applications in the food and pharmaceutical industries, has received increasing interest due to its significant health-promoting effects. Currently, industrial lactulose production is exclusively carried out by chemical isomerization of lactose via the Lobry de Bruyn-Alberda van Ekenstein (LA) rearrangement, and much work has been directed toward improving the conversion efficiency in terms of lactulose yield and purity by using new chemo-catalysts and integrated catalytic-purification systems. Lactulose can also be produced by an enzymatic route offering a potentially greener alternative to chemo-catalysis with fewer side products. Compared to the controlled trans-galactosylation by β-galactosidase, directed isomerization of lactose with high isomerization efficiency catalyzed by the most efficient lactulose-producing enzyme, cellobiose 2-epimerase (CE), has gained much attention in recent decades. To further facilitate the industrial translation of CE-based lactulose biotransformation, numerous studies have been reported on improving biocatalytic performance through enzyme mediated molecular modification. This review summarizes recent developments in the chemical and enzymatic production of lactulose. Related catalytic mechanisms are also highlighted and described in detail. Emerging techniques that aimed at advancing lactulose production, such as the boronate affinity-based technique and molecular biological techniques, are reviewed. Finally, perspectives on challenges and opportunities in lactulose production and purification are also discussed.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China; Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
3
|
Karim A, Aider M. Production of prebiotic lactulose through isomerisation of lactose as a part of integrated approach through whey and whey permeate complete valorisation: A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Ramírez N, Ubilla C, Campos J, Valencia F, Aburto C, Vera C, Illanes A, Guerrero C. Enzymatic production of lactulose by fed-batch and repeated fed-batch reactor. BIORESOURCE TECHNOLOGY 2021; 341:125769. [PMID: 34416660 DOI: 10.1016/j.biortech.2021.125769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The effects of the most significant operational variables on reactor performance of fed-batch and repeated fed-batch were evaluated in the lactulose production by enzymatic transgalactosylation. Feed flowrate in the fed stage (F) and fructose to lactose molar ratio (Fr/L) were the variables that mostly affected the values of lactulose yield (YLu), lactulose productivity (πLu) and selectivity of transgalactosylation (SLu/TOS). Maximum YLu of 0.21 g lactulose per g lactose was obtained at 50% w/w inlet carbohydrates concentration (IC) of, 50 °C, Fr/L 8, F 1 mL⋅min-1, 200 IU∙gLactose-1 reactor enzyme load and pH 4.5. At these conditions the selectivity was 7.4, productivity was 0.71 gLu∙g-1∙h-1and lactose conversion was 0.66. The operation by repeated fed batch increases the efficiency of use of the biocatalysts (EB) and the accumulated productivity compared to batch and fed batch operation with the same biocatalyst. EB obtained was 4.13 gLu∙mgbiocatalyst protein-1, 10.6 times higher than in fed-batch.
Collapse
Affiliation(s)
- Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Javiera Campos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Francisca Valencia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
5
|
β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis. J Fungi (Basel) 2021; 7:jof7030229. [PMID: 33808917 PMCID: PMC8003776 DOI: 10.3390/jof7030229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
β-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their β-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude β-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.
Collapse
|
6
|
Guerrero C, Súarez S, Aburto C, Ubilla C, Ramírez N, Vera C, Illanes A. Comparison of batch and repeated batch operation of lactulose synthesis with cross-linked aggregates of Bacillus circulans β-galactosidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Letsididi R, Hassanin HA, Koko MY, Zhang T, Jiang B, Mu W. Lactulose production by a thermostable glycoside hydrolase from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:928-937. [PMID: 28703279 DOI: 10.1002/jsfa.8539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lactulose has various uses in the food and pharmaceutical fields. Thermostable enzymes have many advantages for industrial exploitation, including high substrate solubilities as well as reduced risk of process contamination. RESULTS Enzymatic synthesis of lactulose employing a transgalactosylation reaction by a recombinant thermostable glycoside hydrolase (GH1) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was investigated. The optimal pH for lactulose production was found to be 4.5, while the optimal temperature was 85 °C, before it dropped moderately to 83% at 90 °C. However, the relative activity for lactulose synthesis dropped sharply to 35% at 95 °C. At optimal reaction conditions of 70% (w/w) initial sugar substrates with molar ratio of lactose to fructose of 1:4, 15 U mL-1 enzyme concentration and 85 °C, the time course reaction produced a maximum lactulose concentration of 108 g L-1 at 4 h, corresponding to a lactulose yield of 14% and 27 g L-1 h-1 productivity with 84% lactose conversion. The transgalactosylation reaction for lactulose synthesis was greatly influenced by the ratio of galactose donor to acceptor. CONCLUSION This novel GH1 may be useful for process applications owing to its high activity in very concentrated substrate reaction media and promising thermostability. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebaone Letsididi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Food Technology Research Centre, Kanye, Botswana
| | - Hinawi Am Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Marwa Yf Koko
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Park AR, Kim JS, Jang SW, Park YG, Koo BS, Lee HC. Rational modification of substrate binding site by structure-based engineering of a cellobiose 2-epimerase in Caldicellulosiruptor saccharolyticus. Microb Cell Fact 2017; 16:224. [PMID: 29233137 PMCID: PMC5726027 DOI: 10.1186/s12934-017-0841-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic, specifically proliferating Bifidobacilli and Lactobacilli and enhancing absorption of calcium and magnesium. The use of cellobiose 2-epimerase (CE) is considered an interesting alternative for industrial production of lactulose. CE reversibly converts D-glucose residues into D-mannose residues at the reducing end of unmodified β-1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. Recently, a few CE 3D structure were reported, revealing mechanistic details. Using this information, we redesigned the substrate binding site of CE to extend its activity from epimerization to isomerization. RESULTS Using superimposition with 3 known CE structure models, we identified 2 residues (Tyr114, Asn184) that appeared to play an important role in binding epilactose. We modified these residues, which interact with C2 of the mannose moiety, to prevent epimerization to epilactose. We found a Y114E mutation led to increased release of a by-product, lactulose, at 65 °C, while its activity was low at 37 °C. Notably, this phenomenon was observed only at high temperature and more reliably when the substrate was increased. Using Y114E, isomerization of lactose to lactulose was investigated under optimized conditions, resulting in 86.9 g/l of lactulose and 4.6 g/l of epilactose for 2 h when 200 g/l of lactose was used. CONCLUSION These results showed that the Y114E mutation increased isomerization of lactose, while decreasing the epimerization of lactose. Thus, a subtle modification of the active site pocket could extend its native activity from epimerization to isomerization without significantly impairing substrate binding. While additional studies are required to scale this to an industrial process, we demonstrated the potential of engineering this enzyme based on structural analysis.
Collapse
Affiliation(s)
- Ah-Reum Park
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Jin-Sook Kim
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Seung-Won Jang
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Young-Gyun Park
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea
| | - Hyeon-Cheol Lee
- ForBioKorea Co., Ltd., Gasan digital 2-ro, Geumcheon-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Guerrero C, Vera C, Serna N, Illanes A. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. BIORESOURCE TECHNOLOGY 2017; 232:53-63. [PMID: 28214445 DOI: 10.1016/j.biortech.2017.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Aspergillus oryzae β-galactosidase was immobilized in monofunctional glyoxyl-agarose and heterofunctional supports (amino-glyoxyl, carboxy-glyoxyl and chelate-glyoxyl agarose), for obtaining highly active and stable catalysts for lactulose synthesis. Specific activities of the amino-glyoxyl agarose, carboxy-glyoxyl agarose and chelate-glyoxyl agarose derivatives were 3676, 430 and 454IU/g biocatalyst with half-life values at 50°C of 247, 100 and 100h respectively. Specific activities of 3490, 2559 and 1060IU/g were obtained for fine, standard and macro agarose respectively. High immobilization yield (39.4%) and specific activity of 7700IU/g was obtained with amino-glyoxyl-agarose as support. The highest yields of lactulose synthesis were obtained with monofunctional glyoxyl-agarose. Selectivity of lactulose synthesis was influenced by the support functionalization: glyoxyl-agarose and amino-glyoxyl-agarose derivatives retained the selectivity of the free enzyme, while selectivity with the carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose derivatives was reduced, favoring the synthesis of transgalactosylated oligosaccharides over lactulose.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Nestor Serna
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
10
|
Guerrero C, Vera C, Illanes A. Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. BIORESOURCE TECHNOLOGY 2017; 230:56-66. [PMID: 28160659 DOI: 10.1016/j.biortech.2017.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Lactulose synthesis was done in repeated-batch mode with Aspergillus oryzae β-galactosidase immobilized in glyoxyl-agarose (GA-βG), amino-glyoxyl-agarose (Am-GA-βG) and chelate-glyoxyl-agarose (Che-GA-βG), at fructose/lactose molar ratios of 4, 12 and 20. Highest yields of lactulose in batch were obtained with Che-GA-βG (0.21, 0.29 and 0.32g·g-1) for 4, 12 and 20 fructose/lactose molar ratios respectively; when operating in 10 repeated batches highest product to biocatalyst mass ratios were obtained with Am-GA-βG (1.82, 2.52 and 2.7g·mg-1), while the lowest were obtained with Che-GA-βG (0.25, 0.33 and 0.39g·mg-1). Operational stability of Am-GA-βG was higher than GA-βG and Che-GA-βG and much higher than that of the free enzyme, at all fructose/lactose molar ratios evaluated. Efficiency of biocatalyst use for GA-βG were 64.4, 35.5 and 18.4kglactulose/gprotein, for fructose/lactose molar ratios of 4, 12 and 20 respectively, while for Che-GA-βG were 1.46, 1.05 and 0.96kglactulose/gprotein.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
11
|
Liao XY, Zheng QW, Zhou QL, Lin JF, Guo LQ, Yun F. Characterization of recombinant β- galactosidase and its use in enzymatic synthesis of lactulose from lactose and fructose. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Designing of a novel β-galactosidase for production of functional oligosaccharides. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2813-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol 2016; 32:154. [DOI: 10.1007/s11274-016-2103-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
|
14
|
Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR. Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Compr Rev Food Sci Food Saf 2016; 15:878-896. [DOI: 10.1111/1541-4337.12215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Sara C. Silvério
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Eugénia A. Macedo
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Faculdade de Engenharia; Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Lígia R. Rodrigues
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
15
|
Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. BIORESOURCE TECHNOLOGY 2015; 190:122-131. [PMID: 25935392 DOI: 10.1016/j.biortech.2015.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Synthesis of lactulose under repeated-batch operation was done with cross-linked aggregates of Aspergillus oryzae β-galactosidase (CLAGs). The effect of the crosslinking agent to enzyme mass ratio and cross-linking time were first evaluated. Best results were obtained at 5.5gdeglutaraldehyde/g enzyme at 5h of cross-linking, obtaining a specific activity of 15,000IUg(-1), with 30% immobilization yield. CLAG was more stable than the free enzyme under non-reactive conditions with a half-life of 123h at 50°C and when operated in repeated-batch mode, yield and productivity was 3.8 and 4.3 times higher. Maximum number of batches was determined considering biocatalyst replacement at 50% residual activity. 98 and 27 batches could be performed under such criterion at fructose/lactose molar ratio of 4 and 20 respectively, reflecting that enzyme stability is strongly affected by the sugars distribution in the reaction medium.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile.
| | - Carlos Vera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Erick Araya
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Raúl Conejeros
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| |
Collapse
|
16
|
Immobilization of acetyl xylan esterase on modified graphite oxide and utilization to peracetic acid production. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Lee JH, Yoo HY, Jung DU, Park C, Song YS, Park C, Kim SW. Research Trend of Lactulose Production from Lactose. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.4.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Wang H, Yang R, Hua X, Zhao W, Zhang W. Enzymatic production of lactulose and 1-lactulose: current state and perspectives. Appl Microbiol Biotechnol 2013; 97:6167-80. [DOI: 10.1007/s00253-013-4998-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/19/2023]
|