Babatabar S, Zamir SM, Shojaosadati SA, Yakhchali B, Zarch AB. Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis.
J Biosci Bioeng 2018;
127:732-737. [PMID:
30598401 DOI:
10.1016/j.jbiosc.2018.12.001]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023]
Abstract
Bisphenol A (BPA) is a toxic compound emitting to the environment mainly by polycarbonate production facilities. In this research, BPA with the initial concentrations in the range of 1-40 mg l-1 was degraded by Ralstonia eutropha. The bacteria were unable to use BPA as the sole carbon source. Therefore, resting and growing cells of phenol-adapted R. eutropha were used for cometabolic biodegradation of BPA with phenol at the concentration of 100 mg l-1. The optimum initial concentrations of BPA were 20 mg l-1 in both approaches of cometabolism. By using resting cells, BPA removal efficiency (RE) reached to 57%, however, RE decreased to 37% by growing cells in the presence of phenol. BPA-degrading activity was inhibited at BPA concentrations >20 mg l-1. Liquid chromatography-mass spectrometry technique was used to identify some metabolic intermediates generated during BPA degradation process as 1,2-bis(4-hydroxyphenyl)-2-propanol, 4-(2-propanol)-phenol, 4-hydroxyacetophenone, 4-isopropenylphenol, and 4-hydroxybenzoic acid. Finally, metabolic pathways for BPA degradation were proposed in this study.
Collapse