1
|
AlSalem HS, Monier M, Abomuti MA, Alnoman RB, Alharbi HY, Aljohani MS, Al-Goul ST, Elkaeed EB, Zghab I, Shafik AL. Chiral resolution of (±)-flurbiprofen using molecularly imprinted hydrazidine-modified cellulose microparticles. Int J Biol Macromol 2023; 253:126928. [PMID: 37717875 DOI: 10.1016/j.ijbiomac.2023.126928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - May Abdullah Abomuti
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Soha T Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Imen Zghab
- Chemistry department, College of Science, Jazan university, Saudi Arabia
| | - Amira L Shafik
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Wang Y, Chen Y, Li C, Zhu Y, Ge L, Yang K. Magnetic Molecularly Imprinted Polymers Based on Dehydroabietylamine as Chiral Monomers for the Enantioseparation of RS-Mandelic Acid. ACS OMEGA 2021; 6:14977-14984. [PMID: 34151079 PMCID: PMC8209806 DOI: 10.1021/acsomega.1c01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Stereoselective adsorption of the enantiomers shows potential in the resolution of a racemate. In this work, we synthesized novel magnetic surface molecularly imprinted polymers (MIPs) on the surface of the γ-methacryloxypropyltrimethoxysilane (MPS)-modified Fe3O4@SiO2 particles to utilize chiral dehydroabietylamine (DHA) as a functional monomer and R-mandelic acid as a template molecule (DHA-MIPs). We performed the resolution of mandelic acid racemate (RS-MA) via adsorption on the as-prepared MIPs. The results revealed that the MIPs have good affinity and high adsorption capacity for R-MA and show better enantioselective adsorption ability for R-MA than that for S-MA. One-stage adsorption of RS-MA on the MIPs can achieve up to 53.7% enantiomeric excess (ee) for R-MA. These help us to improve the chiral separation ability of the traditional MIPs using a chiral rather than an achiral monomer in MIP preparation. The MIPs can be employed as an economic and efficient adsorbent for chiral separation of MA racemate.
Collapse
Affiliation(s)
- Yidan Wang
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yande Chen
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Congcong Li
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yi Zhu
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Li Ge
- Department
of Pharmaceutical Engineering, Medical College, Guangxi University, Nanning 530004, China
| | - Kedi Yang
- Department
of Pharmaceutical Engineering, Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Lu B, Xia J, Wang Z, Zhang F, Yang M, Li Y, Xia Y. Molecularly imprinted electrochemical sensor based on an electrode modified with an imprinted pyrrole film immobilized on a β-cyclodextrin/gold nanoparticles/graphene layer. RSC Adv 2015. [DOI: 10.1039/c5ra12389e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel molecularly imprinted electrochemical sensor was constructed for the sensitive detection of quercetin (Qu) based on a glassy carbon electrode (GCE) modified with β-cyclodextrin (β-CD), gold nanoparticles(AuNPs) and graphene (GR).
Collapse
Affiliation(s)
- Bing Lu
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Jianfei Xia
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Zonghua Wang
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Feifei Zhang
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Min Yang
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Yanhui Li
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| | - Yanzhi Xia
- College of Chemical Science and Engineering
- Laboratory of Fiber Materials and Modern Textiles
- The Growing Base for State Key Laboratory
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles
| |
Collapse
|
4
|
Methods for separation of organic and pharmaceutical compounds by different polymer materials. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|