1
|
Sikander A, Kelly S, Kuchta K, Sievers A, Willner T, Hursthouse AS. Chemical and Microbial Leaching of Valuable Metals from PCBs and Tantalum Capacitors of Spent Mobile Phones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610006. [PMID: 36011640 PMCID: PMC9408593 DOI: 10.3390/ijerph191610006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 05/25/2023]
Abstract
We compared chemical and microbial leaching for multi-metal extraction from printed circuit boards (PCBs) and tantalum capacitor scrap. A mixed consortium of acidophiles and heterotrophic fungal strains were used in the experiments and compared to chemical leaching using specific acids (sulfuric, citric and oxalic acids). Under optimum conditions, 100% extraction efficiency of Cu, and nearly 85% of Zn, Fe, Al and Ni were achieved from PCB and tantalum capacitor scrap samples using sulfuric acid. The mixed consortium of acidophiles successfully mobilized, Ni and Cu (99% and 96%, respectively) while Fe, Zn, Al and Mn reached an extraction yield of 89, 77, 70 and 43%, respectively, from the PCB samples. For the tantalum capacitor samples, acidophiles mobilized 92% Cu, 88% Ni, 78% Fe, 77% Al, 70% Zn and 57% Mn. Metal mobilization from PCBs and tantalum capacitor scrap by A. niger filtrate showed efficient solubilization of Cu, Fe, Al, Mn, Ni, Pb and Zn at an efficiency of 52, 29, 75, 5, 61, 21 and 35% from PCB samples and 61, 25, 69, 23, 68, 15 and 45% from tantalum capacitor samples, respectively. Microbial leaching proved viable as a method to extract base metals but was less specific for tantalum and precious metals in electronic waste. The implications of these results for further processing of waste electronic and electrical equipment (WEEE) are considered in potential hybrid treatment strategies.
Collapse
Affiliation(s)
- Asma Sikander
- Department of Process Engineering, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
- School of Computing, Engineering & Physical Sciences, University of the West of the Scotland, Scotland PA1 2BE, UK
| | - Steven Kelly
- School of Health Life Sciences, University of the West of Scotland, Scotland G72 0LH, UK
| | - Kerstin Kuchta
- Institute for Environmental Engineering and Energy Economics, TUHH—Hamburg University of Technology, 21079 Hamburg, Germany
| | - Anika Sievers
- Department of Process Engineering, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Thomas Willner
- Department of Process Engineering, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Andrew S. Hursthouse
- School of Computing, Engineering & Physical Sciences, University of the West of the Scotland, Scotland PA1 2BE, UK
| |
Collapse
|
2
|
Sajjad W, Zheng G, Ma X, Xu W, Ali B, Rafiq M, Zada S, Irfan M, Zeman J. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136136. [PMID: 31884267 DOI: 10.1016/j.scitotenv.2019.136136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/19/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Disposing of low-grade ores involves numerous environmental issues. Bioleaching with acidophilic bacteria is the preferred solution to process these ores for metals recovery. In this study, indigenous iron-oxidizing bacteria Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, and Leptospirillum ferrooxidans were used in consortia supplemented with acid-treated bamboo sawdust (BSD) for copper and zinc recovery. Findings showed the extreme catalytic response of BSD with the best recovery of metals. Maximum of 92.2 ± 4.0% copper (0.35%) and 90.0 ± 5.4% zinc (0.33%) were recovered after 8 days of processing in the presence of 2 g/L BSD. Significant variations were reported in physicochemical parameters during bioleaching in the presence of a different concentration of BSD. Fourier Transform Infrared spectroscopy results of bioleached residues showed significant variations in spectral pattern and maximum variations were reported in 2.0 g/L BSD, which indicates maximum metals dissolutions. The impact of bacterial consortia and BSD on iron speciation of bioleached ores was analyzed by using Mössbauer spectroscopy and clear variations in iron speciation were reported. Furthermore, the bacterial community structure dynamics revealed significant variations in the individual bacterial proportion in each experiment. This finding shows that the dosage concentration of BSD influenced the microenvironment, which effect the bacterial abundance and these variations in the bacterial structural communities were not associated with the initial proportion of bacterial cells inoculated in the bioleaching process. Moreover, the mechanism of chemical reactions was proposed by explaining the possible role of BSD as a reductant under micro-aerophilic conditions that facilitates the bacterial reduction of ferric iron. This type of bioleaching process with indigenous iron-oxidizing bacteria and BSD has significant potential to further upscale the bioleaching process for recalcitrant ore bodies in an environment friendly and cost-effective way.
Collapse
Affiliation(s)
- Wasim Sajjad
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China.
| | - Xiangxian Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Wang Xu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Muhammad Irfan
- Department of Microbiology and Cell Science Genetics Institute and Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States of America
| | - Josef Zeman
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China; Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
3
|
Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Extremophiles 2018; 22:851-863. [DOI: 10.1007/s00792-018-1042-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022]
|
4
|
Panda S, Akcil A, Mishra S, Erust C. Synergistic effect of biogenic Fe 3+ coupled to S° oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous Pyrite Ash Waste. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:59-70. [PMID: 27915100 DOI: 10.1016/j.jhazmat.2016.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/04/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe2O3) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe2+. The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample.
Collapse
Affiliation(s)
- Sandeep Panda
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey.
| | - Srabani Mishra
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey; Academy of Scientific and Innovation, Research, CSIR - Institute of Minerals & Materials Technology (AcSIR), Bhubaneswar 751013, India
| | - Ceren Erust
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| |
Collapse
|
5
|
Experiences and Future Challenges of Bioleaching Research in South Korea. MINERALS 2016. [DOI: 10.3390/min6040128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Panda S, Akcil A, Pradhan N, Deveci H. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. BIORESOURCE TECHNOLOGY 2015; 196:694-706. [PMID: 26318845 DOI: 10.1016/j.biortech.2015.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Sandeep Panda
- Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, Odisha, India
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey.
| | - Nilotpala Pradhan
- Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, Odisha, India
| | - Haci Deveci
- Hydromet B&PM Group, Mineral & Coal Process. Div., Dept. of Mining Eng., Karadeniz Technical University, TR61080 Trabzon, Turkey
| |
Collapse
|
7
|
Panda S, Mishra S, Rao DS, Pradhan N, Mohapatra U, Angadi S, Mishra BK. Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0298-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
|