1
|
Sohanwal M, Omar S, Abu-Reziq R. Ionic Liquid-Functionalized Periodic Mesoporous Organosilica: A Robust Support for Palladium Nanoparticles in Carbonylative Suzuki Coupling Reactions. Chem Asian J 2025:e202401802. [PMID: 39989383 DOI: 10.1002/asia.202401802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
This study presents the synthesis and application of palladium nanoparticles (Pd NPs) supported on ionic-liquid-functionalized periodic mesoporous organosilica (PMO-IL) as an efficient heterogeneous catalyst for carbonylative Suzuki coupling reactions. The PMO-IL material was prepared via a sol-gel polycondensation process using tetraethyl orthosilicate (TEOS) and a bis-silylated ionic liquid monomer. The ionic liquid groups within the PMO framework facilitated the adsorption of palladium salts through ion exchange, followed by reduction to form Pd NPs. Comprehensive characterization of the Pd(np)@PMO-IL system, including high-resolution microscopy (HR-SEM and HR-TEM), X-ray diffraction (XRD), solid-state NMR, FT-IR, and nitrogen adsorption-desorption (BET) analyses, confirmed its structure, morphology, and high surface area. The catalytic system demonstrated remarkable activity, selectivity, and recyclability in the carbonylative Suzuki coupling reaction, achieving high turnover numbers (TON) and turnover frequencies (TOF) under mild conditions. This hybrid material highlights the potential of ionic liquid-functionalized PMOs as versatile supports for metal nanoparticles in sustainable catalytic applications.
Collapse
Affiliation(s)
- Manan Sohanwal
- Institute of Chemistry, Casali Center of Applied Chemistry, Center for Nanoscience and Nanotechnology, the Hebrew University of, Jerusalem, 9190401, Israel
| | - Suheir Omar
- Institute of Chemistry, Casali Center of Applied Chemistry, Center for Nanoscience and Nanotechnology, the Hebrew University of, Jerusalem, 9190401, Israel
| | - Raed Abu-Reziq
- Institute of Chemistry, Casali Center of Applied Chemistry, Center for Nanoscience and Nanotechnology, the Hebrew University of, Jerusalem, 9190401, Israel
| |
Collapse
|
2
|
Santhamoorthy M, Ranganathan S, Fathima Arul Sigamani L, Kim SC, Pandiaraj S, Manoharadas S, Lin MC, Kumarasamy K, Phan TTV. Dimercaprol-modified mesoporous silica nanoparticles for efficient removal of toxic mercury ions from aqueous solution. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:401. [PMID: 39196434 DOI: 10.1007/s10653-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
A surface-modified mesoporous silica nanoparticle containing dimercaprol monomers was created utilizing the sol-gel condensation process, using tetraethyl orthosilicate (TEOS) as the silica source and poloxamer as the structure directing agent. To accomplish this synthesis, 3-glycidoxypropyl triethoxysilane (GPTS, 20 mol%) was incorporated into the silica walls during the sol-gel condensation process, along with TEOS. Furthermore, dimercaprol (DM) monomers were incorporated onto silica surfaces by a ring-opening reaction between GPTS epoxy groups, and dimercaprol hydroxyl groups. The prepared dimercaprol-modified silica adsorbent (MSN-DT NPs) material has been studied using a variety of instruments, including XRD, FT-IR, N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG) analysis, and zeta potential analysis. The MSN-DT NPs material selectively adsorbs mercury ions, with a high adsorption amount of 125 mg/g and a removal capability of roughly ~ 90% from the original metal ion mixture comprising other competing metals such as Pb2+, Ni2+, Fe2+, and Zn2+. The MSN-DT NPs adsorbent shows recyclable qualities for up to five cycles when treated with an acidic aqueous solution (0.1 M HCl). As a result, the MSN-DT NPs adsorbent may be regenerated and reused up to five times without losing its adsorption effectiveness. The experimental findings showed that the MSN-DT NPs adsorbent may be employed to selectively remove hazardous Hg2+ ions from an aqueous solution.
Collapse
Affiliation(s)
- Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Suresh Ranganathan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Tamil Nadu, Coimbatore, 641021, India
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC.
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Viet Nam.
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Viet Nam.
| |
Collapse
|
3
|
Santhamoorthy M, Mohan A, Mani KS, Devendhiran T, Periyasami G, Kim SC, Lin MC, Kumarasamy K, Huang PJ, Ali A. Synthesis of functionalized mesoporous silica nanoparticles for colorimetric and fluorescence sensing of selective metal (Fe 3+) ions in aqueous solution. Methods 2024; 223:26-34. [PMID: 38266951 DOI: 10.1016/j.ymeth.2024.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.
Collapse
Affiliation(s)
| | - Anandhu Mohan
- Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kailasam Saravana Mani
- Centre for Material Chemistry, Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Tamiloli Devendhiran
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, ROC
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC.
| | - Po-Jui Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan, ROC
| |
Collapse
|
4
|
Comès A, Theissen J, Dallemagne S, Morena A, Aprile C. Imidazolium-Containing Hybrid Organic-Inorganic Materials for the Conversion of CO 2: Unveiling the Key Role of the Ionic Template. Inorg Chem 2023; 62:21003-21013. [PMID: 38060352 DOI: 10.1021/acs.inorgchem.3c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
A straightforward synthesis of a series of hybrid organic-inorganic materials (HOIMs) containing imidazolium moieties was achieved. The preparation of the imidazolium acetate precursor was performed in a single-step procedure using the Debus-Radziszewski reaction. The as-synthesized alkoxysilane was employed in combination with tetraethyl orthosilicate to generate an HOIM presenting a high specific surface area. Two different structure-directing agents (SDAs), an anionic (sodium dodecyl sulfate (SDS)) or a cationic (cetyltrimethylammonium bromide) surfactant, were used to investigate the role played by the SDA on the distribution of the imidazolium-based active sites within the silica structure. After the synthesis, the acetate ion was replaced with Cl- and Br- via a simple acid treatment. This procedure favors also the removal of the surfactant, thus releasing the porosity of the solids. The HOIMs synthesized were fully characterized via low-angle X-ray diffraction, N2 physisorption, transmission electron microscopy, 13C and 29Si MAS NMR, combustion chemical analysis, X-ray photoelectron spectroscopy, and CO2 physisorption to assess their physicochemical and structural features, as well as the successful incorporation of imidazolium salts. Their catalytic activity in the conversion of CO2 was tested over different epoxides to produce the corresponding cyclic carbonates. The key role of the SDS (anionic surfactant) as a templating agent was proved. The best material was stable under the selected reaction conditions, reusable over multiple cycles, and active on a series of different epoxides, thus proving its versatility.
Collapse
Affiliation(s)
- Adrien Comès
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Jennifer Theissen
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Sandrine Dallemagne
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Anthony Morena
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Carmela Aprile
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| |
Collapse
|
5
|
Mastalir Á, Molnár Á. Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Mane SM, Raorane CJ, Shin JC. Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto-Amine Groups for Selective Adsorption of Cu 2+ Ion from Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3232. [PMID: 36145020 PMCID: PMC9503849 DOI: 10.3390/nano12183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In a sol-gel co-condensation, a mesoporous silica hybrid integrated with (3-mercaptopropyl)trimethoxysilane (TMPSH) was prepared and then reacted with allylamine via a post-surface functionalization approach. Approximately 15 mol% of TMSPSH was introduced into the mesoporous silica pore walls along with tetraethyl orthosilicate. The mercapto ligands in the prepared mesoporous silica pore walls were then reacted with allylamine (AM) to form the mercapto-amine-modified mesoporous silica adsorbent (MSH@MA). The MSH@MA NPs demonstrate highly selective adsorption of copper (Cu2+) ions (~190 mg/g) with a fast equilibrium adsorption time (30 min). The prepared adsorbent shows at least a five times more efficient recyclable stability. The MSH@MA NPs adsorbent is useful for selective adsorption of Cu2+ ions.
Collapse
Affiliation(s)
- Sagar M. Mane
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | | | - Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| |
Collapse
|
7
|
Liang Y. Recent advanced development of metal-loaded mesoporous organosilicas as catalytic nanoreactors. NANOSCALE ADVANCES 2021; 3:6827-6868. [PMID: 36132354 PMCID: PMC9417426 DOI: 10.1039/d1na00488c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 05/10/2023]
Abstract
Ordered periodic mesoporous organosilicas have been widely applied in adsorption/separation/sensor technologies and the fields of biomedicine/biotechnology as well as catalysis. Crucially, surface modification with functional groups and metal complexes or nanoparticle loading has ensured high efficacy and efficiency. This review will highlight the current state of design and catalytic application of transition metal-loaded mesoporous organosilica nanoreactors. It will outline prominent synthesis approaches for the grafting of metal complexes, metal salt adsorption and in situ preparation of metal nanoparticles, and summarize the catalytic performance of the resulting mesoporous organosilica hybrid materials. Finally, the potential prospects and challenges of metal-loaded mesoporous organosilica nanoreactors are addressed.
Collapse
Affiliation(s)
- Yucang Liang
- Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 Tübingen 72076 Germany +49 7071 292436
| |
Collapse
|
8
|
Timm J, Marschall R. Organosilica Nanoparticles with Ordered Trimodal Porosity and Selectively Functionalized Mesopores. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jana Timm
- University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| | - Roland Marschall
- University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
9
|
Zhang H, Cai C, Hu T, Zhang Z, Dai L, Fei H, Bai H, Wu C, Gong X, Zheng X. Magnetically separable and efficient platinum catalyst: Amino ligand enhanced loading and Fe
2+
facilitated Pt
0
formation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haifeng Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Cheng Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Zhijie Zhang
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Lina Dai
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Huafeng Fei
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Hongli Bai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| |
Collapse
|
10
|
SBA-15 with Crystalline Walls Produced via Thermal Treatment with the Alkali and Alkali Earth Metal Ions. MATERIALS 2021; 14:ma14185270. [PMID: 34576497 PMCID: PMC8466871 DOI: 10.3390/ma14185270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Crystalline walled SBA-15 with large pore size were prepared using alkali and alkali earth metal ions (Na+, Li+, K+ and Ca2+). For this work, the ratios of alkali metal ions (Si/metal ion) ranged from 2.1 to 80, while the temperatures tested ranged from 500 to 700 °C. The SBA-15 prepared with Si/Na+ ratios ranging from 2.1 to 40 at 700 °C exhibited both cristobalite and quartz SiO2 structures in pore walls. When the Na+ amount increased (i.e., Si/Na increased from 80 to 40), the pore size was increased remarkably but the surface area and pore volume of the metal ion-based SBA-15 were decreased. When the SBA-15 prepared with Li+, K+ and Ca2+ ions (Si/metal ion = 40) was thermally treated at 700 °C, the crystalline SiO2 of quartz structure with large pore diameter (i.e., 802.5 Å) was observed for Ca+2 ion-based SBA-15, while no crystalline SiO2 structures were observed in pore walls for both the K+ and Li+ ions treated SBA-15. The crystalline SiO2 structures may be formed by the rearrangement of silica matrix when alkali or alkali earth metal ions are inserted into silica matrix at elevated temperature.
Collapse
|
11
|
Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A facile and direct method for synthesizing magnetic periodic mesoporous organosilica nanoparticles from pure organosilane precursors is described. Magnetic ethylene- and phenylene-bridged periodic mesoporous organosilica nanoparticles (PMO NPs) were prepared by nanoemulsification techniques. For fabricating magnetic ethylene- or phenylene-bridged PMO NPs, hydrophobic magnetic nanoparticles in an oil-in-water (o/w) emulsion were prepared, followed by a sol–gel condensation of the incorporated bridged organosilane precursor (1,2 bis(triethoxysilyl)ethane or 1,4 bis(triethoxysilyl)benzene), respectively. The resulting materials were characterized using high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, and nitrogen sorption analysis (N2-BET). The magnetic ethylene-bridged PMO NPs were successfully loaded using a ruthenium oxide catalyst by means of sonication and evaporation under mild conditions. The obtained catalytic system, termed Ru@M-Ethylene-PMO NPS, was applied in a reduction reaction of aromatic compounds. It exhibited very high catalytic behavior with easy separation from the reaction medium by applying an external magnetic field.
Collapse
|
12
|
Platinum‐Imidazolyl Schiff Base Complexes Immobilized in Periodic Mesoporous Organosilica Frameworks as Catalysts for Hydrosilylation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Synthesis, characterization, and application of zinc supported on ionic liquid‐based periodic mesoporous organosilica (Zn@PMO-IL) in A3-coupling reaction for the synthesis of propargylamines. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Sudharsan M, Subramanian S, Amali AJ, Suresh D. Palladium Nanoparticles Incorporated Thiazoline Functionalized Periodic Mesoporous Organosilica: Efficient Catalyst for Selective Hydrogenation & C
sp
2
−C
sp
2
Bond Formation Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202001609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Murugesan Sudharsan
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| | - Saravanan Subramanian
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
- Present address: Inorganic Materials and Catalysis Division CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat − 364 002 India
| | - Arlin Jose Amali
- Center for Green Chemistry Processes School of Chemistry Madurai Kamaraj University Madurai Tamil Nadu 625 021 India
| | - Devarajan Suresh
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| |
Collapse
|
15
|
Ribeiro SO, Granadeiro CM, Corvo MC, Pires J, Campos-Martin JM, de Castro B, Balula SS. Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Front Chem 2019; 7:756. [PMID: 31799236 PMCID: PMC6868090 DOI: 10.3389/fchem.2019.00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/22/2019] [Indexed: 12/04/2022] Open
Abstract
The monolacunary Keggin-type [PW11O39]7− (PW11) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (N-trimethoxysilypropyl-N, N, N-trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW11@TMA-SBA-15 and PW11@TMA-PMOE composites were evaluated as heterogeneous catalysts in the oxidative desulfurization of a model diesel. The PW11@TMA-SBA-15 catalyst showed a remarkable desulfurization performance by reaching ultra-low sulfur levels (<10 ppm) after only 60 min using either a biphasic extractive and catalytic oxidative desulfurization (ECODS) system (1:1 MeCN/diesel) or a solvent-free catalytic oxidative desulfurization (CODS) system. Furthermore, the mesoporous silica composite was able to be recycled for six consecutive cycles without any apparent loss of activity. The promising results have led to the application of the catalyst in the desulfurization of an untreated real diesel supplied by CEPSA (1,335 ppm S) using the biphasic system. The system has proved to be a highly efficient process by reaching desulfurization values higher than 90% for real diesel during three consecutive cycles.
Collapse
Affiliation(s)
- Susana O Ribeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
| | - Carlos M Granadeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
| | - Marta C Corvo
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - João Pires
- Faculdade de Ciências, Centro de Química e Bioquímica and CQE, Universidade de Lisboa, Lisbon, Portugal
| | - José M Campos-Martin
- Grupo de Energía y Química Sostenibles (EQS), Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
| | - Baltazar de Castro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
| | - Salete S Balula
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
16
|
Zhou H, Tan J, Zhang X. Nanoreactors for Chemical Synthesis and Biomedical Applications. Chem Asian J 2019; 14:3240-3250. [DOI: 10.1002/asia.201900967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hua Zhou
- Cancer Centre and Centre for Precision Medicine Research and Training, Faculty of Health SciencesUniversity of Macau Macau SAR P.R. China
| | - Jingyun Tan
- Cancer Centre and Centre for Precision Medicine Research and Training, Faculty of Health SciencesUniversity of Macau Macau SAR P.R. China
| | - Xuanjun Zhang
- Cancer Centre and Centre for Precision Medicine Research and Training, Faculty of Health SciencesUniversity of Macau Macau SAR P.R. China
| |
Collapse
|
17
|
Imine-bridged periodic mesoporous organosilica as stable high-activity catalytic for Knoevenagel reaction in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03781-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Haghighat M, Shirini F, Golshekan M. Efficiency of NaHSO4 modified periodic mesoporous organosilica magnetic nanoparticles as a new magnetically separable nanocatalyst in the synthesis of [1,2,4]triazolo quinazolinone/pyrimidine derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Huo H, Xu X, Zhao T, Li Y, Jiang Y, Lin K. Hybrid mesoporous organosilicas with molecularly imprinted cavities: towards extended exposure of active amino groups in the framework wall. Dalton Trans 2018; 47:4508-4517. [DOI: 10.1039/c7dt04832g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Towards extended exposure of active sites in the framework of ordered mesoporous materials via molecularly imprinted cavities.
Collapse
Affiliation(s)
- Hang Huo
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Tingting Zhao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yudong Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
20
|
Croissant JG, Cattoën X, Wong MCM, Durand JO, Khashab NM. Syntheses and applications of periodic mesoporous organosilica nanoparticles. NANOSCALE 2015; 7:20318-34. [PMID: 26585498 DOI: 10.1039/c5nr05649g] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | | | | | | | | |
Collapse
|
21
|
Ashraf MA, Khan AM, Ahmad M, Sarfraz M. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment. Front Chem 2015; 3:42. [PMID: 26322304 PMCID: PMC4531295 DOI: 10.3389/fchem.2015.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/26/2015] [Indexed: 11/13/2022] Open
Abstract
Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.
Collapse
Affiliation(s)
- Muhammad Aqeel Ashraf
- Department of Geology, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
- The Centre for Research in Biotechnology for Agriculture, University of MalayaKuala Lumpur, Malaysia
- The Centre for Research in Waste Management, University of MalayaKuala Lumpur, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia SabahKota Kinabalu, Malaysia
| | - Aysha Masood Khan
- Department of Geology, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Maliha Sarfraz
- Institute of Pharmacy, Physiology and Pharmacology, University of AgricultureFaisalabad, Pakistan
| |
Collapse
|