1
|
Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14122663. [PMID: 36559157 PMCID: PMC9784852 DOI: 10.3390/pharmaceutics14122663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
Collapse
|
2
|
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability-A Review. Pharmaceutics 2022; 14:pharmaceutics14112530. [PMID: 36432720 PMCID: PMC9699215 DOI: 10.3390/pharmaceutics14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.
Collapse
|
3
|
Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals (Basel) 2022; 15:ph15020175. [PMID: 35215288 PMCID: PMC8875116 DOI: 10.3390/ph15020175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeic acid (CA), a phenolic acid, is a powerful antioxidant with proven effectiveness. CA instability gives it limited use, so encapsulation in polymeric nanomaterials has been used to solve the problem but also to obtain topical hydrogel formulas. Two different formulas of caffeic acid liposomes were incorporated into three different formulas of carbopol-based hydrogels. A Franz diffusion cell system was used to evaluate the release of CA from hydrogels. For the viscoelastic measurements of the hydrogels, the equilibrium flow test was used. The dynamic tests were examined at rest by three oscillating tests: the amplitude test, the frequency test and the flow and recovery test. These carbopol gels have a high elasticity at flow stress even at very low polymer concentrations. In the analysis of the texture, the increase of the polymer concentration from 0.5% to 1% determined a linear increase of the values of the textural parameters for hydrogels. The textural properties of 1% carbopol-based hydrogels were slightly affected by the addition of liposomal vesicle dispersion and the firmness and shear work increased with increasing carbomer concentration.
Collapse
|
4
|
Roisman S, Dotan AL, Lewitus DY. Polycaprolactone‐based hotmelt adhesive for
hernia‐mesh
fixation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sabrina Roisman
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| | - Ana L. Dotan
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| | - Dan Y. Lewitus
- Department of Polymer Materials Engineering Shenkar College Ramat‐Gan Israel
| |
Collapse
|
5
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
6
|
Ha JH, Jeong YJ, Kim AY, Hong IK, Lee NH, Park SN. Preparation and Physicochemical Properties of a Cysteine Derivative‐Loaded Deformable Liposomes in Hydrogel for Enhancing Whitening Effects. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ji Hoon Ha
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Yun Ju Jeong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - A Young Kim
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - In Ki Hong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Nan Hee Lee
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Soo Nam Park
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| |
Collapse
|
7
|
Hong IK, Ha JH, Han S, Kang H, Park SN. The Effect of Alkyl Chain Number in Sucrose Surfactant on the Physical Properties of Quercetin-Loaded Deformable Nanoliposome and Its Effect on In Vitro Human Skin Penetration. NANOMATERIALS 2018; 8:nano8080622. [PMID: 30115875 PMCID: PMC6116261 DOI: 10.3390/nano8080622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Non-invasive skin penetration of a drug is increased by an edge activator, which enhances the nanoliposome deformability. The objective of this study was to investigate the role of the alkyl chain number of sucrose surfactants as an edge activator in elastic nanoliposomes. In addition, the physicochemical properties of the elastic nanoliposomes were characterized and an in vitro human skin permeation study was performed. Elastic nanoliposomes that were composed of sucrose monostearate (MELQ), sucrose distearate (DELQ), and sucrose tristearte (TELQ) were prepared using a thin-film hydration method. Particle size and entrapment efficiency of elastic nanoliposomes increased proportionally with an increase in the amounts and the numbers of the stearate in sucrose surfactant. Deformability of elastic nanoliposomes was indicated as DELQ > MELQ > TELQ and the same pattern was revealed through the in vitro human skin permeability tests. These results suggest that the number of alkyl chains of sucrose surfactant as edge activator affects the physicochemical property, stability, and skin permeability in elastic nanoliposome. Our findings give a valuable platform for the development of elastic nanoliposomes as skin drug delivery systems.
Collapse
Affiliation(s)
- In Ki Hong
- Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-Gu, Seoul 01811, Korea.
- Skin Care R&D Center, Kolmar Korea Co., Ltd., 12-11, deokgogae-gil, jeonui-myeon, Sejong 30004, Korea.
| | - Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-Gu, Seoul 01811, Korea.
| | - Sangkeun Han
- Skin Care R&D Center, Kolmar Korea Co., Ltd., 12-11, deokgogae-gil, jeonui-myeon, Sejong 30004, Korea.
| | - Hakhee Kang
- Skin Care R&D Center, Kolmar Korea Co., Ltd., 12-11, deokgogae-gil, jeonui-myeon, Sejong 30004, Korea.
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-Gu, Seoul 01811, Korea.
| |
Collapse
|
8
|
Lee G, Park YI. Lanthanide-Doped Upconversion Nanocarriers for Drug and Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E511. [PMID: 29987223 PMCID: PMC6071191 DOI: 10.3390/nano8070511] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023]
Abstract
Compared to traditional cancer treatments, drug/gene delivery is an advanced, safe, and efficient method. Nanoparticles are widely used as nanocarriers in a drug/gene delivery system due to their long circulation time and low multi-drug resistance. In particular, lanthanide-doped upconversion nanoparticles (UCNPs) that can emit UV and visible light by near-infrared (NIR) upconversion demonstrated more efficient and safer drug/gene delivery. Because of the low penetration depth of UV and visible light, a photoinduced reaction such as photocleavage or photoisomerization has proven restrictive. However, NIR light has high tissue penetration depth and stimulates the photoinduced reaction through UV and visible emissions from lanthanide-doped UCNPs. This review discusses the optical properties of UCNPs that are useful in bioapplications and drug/gene delivery systems using the UCNPs as a photoreaction inducer.
Collapse
Affiliation(s)
- Gibok Lee
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
9
|
Synthesis and characterization of ethosomal carriers containing cosmetic ingredients for enhanced transdermal delivery of cosmetic ingredients. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-017-0344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|