1
|
Mandalika AS, Runge TM, Ragauskas AJ. Membrane Separations in Biomass Processing. Chempluschem 2025; 90:e202400497. [PMID: 39466007 PMCID: PMC11826140 DOI: 10.1002/cplu.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
The development of integrated biorefineries and the greater utilization of biomass resources to reduce dependence on fossil fuel-derived products require research emphasis not just on conversion strategies but also on improving separations associated with biorefining. A significant roadblock towards developing biorefineries is the lack of effective separation techniques evidenced by the relative deficiency of literature in this area. Additionally, high conversion yields may only be realized if effective separations generate feedstock of sufficient purity - this makes research into biomass conversion strategies all the more critical. In this review, the challenges associated with biomass separations are discussed, followed by an overview of the most appropriate separation strategies for processing biomass. One of the unit operations most appealing for biorefining, membrane separations (MS), is then considered along with a review of the recent literature utilizing this technique in biomass processing.
Collapse
Affiliation(s)
- Anurag S. Mandalika
- Assistant Research Professor, Center for Energy StudiesLouisiana State University93 S Quad Dr, 1115Baton RougeLA 70803
| | - Troy M. Runge
- Professor of Biological Systems Engineering and CALS Associate Dean for Research, 2121 Wisconsin Energy Institute BuildingUniversity of Wisconsin-Madison1552 University AveMadisonWI 53726
| | - Arthur J. Ragauskas
- Governor's Chair for Biorefining, Joint Institute for Biological Sciences, Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RoadOak RidgeTN 37831
| |
Collapse
|
2
|
Zhang G, Zhang L, Ahmad I, Zhang J, Zhang A, Tang W, Ding Y, Lyu F. Recent advance in technological innovations of sugar-reduced products. Crit Rev Food Sci Nutr 2022; 64:5128-5142. [PMID: 36454077 DOI: 10.1080/10408398.2022.2151560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Lyu Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
3
|
Lekshmi Sundar MS, Madhavan Nampoothiri K. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. BIORESOURCE TECHNOLOGY 2022; 345:126548. [PMID: 34906704 DOI: 10.1016/j.biortech.2021.126548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Xylose, the most abundant pentose sugar of the hemicellulosic fraction of lignocellulosic biomass, has to be utilized rationally for the commercial viability of biorefineries. An effective pre-treatment strategy for the release of xylose from the biomass and an appropriate microbe of the status of an Industrial strain for the utilization of this pentose sugar are key challenges which need special attention for the economic success of the biomass value addition to chemicals. Xylitol and xylonic acid, the alcohol and acid derivatives of xylose are highly demanded commodity chemicals globally with plenty of applications in the food and pharma industries. This review emphasis on the natural and metabolically engineered strains utilizing xylose and the progressive and innovative fermentation strategies for the production and subsequent recovery of the above said chemicals from pre-treated biomass medium.
Collapse
Affiliation(s)
- M S Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
4
|
Li X, Tan S, Luo J, Pinelo M. Nanofiltration for separation and purification of saccharides from biomass. Front Chem Sci Eng 2021; 15:837-853. [PMID: 33717607 PMCID: PMC7937517 DOI: 10.1007/s11705-020-2020-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Saccharide production is critical to the development of biotechnology in the field of food and biofuel. The extraction of saccharide from biomass-based hydrolysate mixtures has become a trend due to low cost and abundant biomass reserves. Compared to conventional methods of fractionation and recovery of saccharides, nanofiltration (NF) has received considerable attention in recent decades because of its high selectivity and low energy consumption and environmental impact. In this review the advantages and challenges of NF based technology in the separation of saccharides are critically evaluated. Hybrid membrane processes, i.e., combining NF with ultrafiltration, can complement each other to provide an efficient approach for removal of unwanted solutes to obtain higher purity saccharides. However, use of NF membrane separation technology is limited due to irreversible membrane fouling that results in high capital and operating costs. Future development of NF membrane technology should therefore focus on improving material stability, antifouling ability and saccharide targeting selectivity, as well as on engineering aspects such as process optimisation and membrane module design.
Collapse
Affiliation(s)
- Xianhui Li
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Sheng Tan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
| | - Manuel Pinelo
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
5
|
Ahuja V, Macho M, Ewe D, Singh M, Saha S, Saurav K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020; 9:E1592. [PMID: 33147854 PMCID: PMC7693686 DOI: 10.3390/foods9111592] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India;
| | - Markéta Macho
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India;
| | - Subhasish Saha
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Kumar Saurav
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| |
Collapse
|
6
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
7
|
|
8
|
A comparative study on pomegranate juice concentration by osmotic distillation and thermal evaporation processes. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0332-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Yusoff II, Rohani R, Khairul Zaman N, Junaidi MUM, Mohammad AW, Zainal Z. Durable pressure filtration membranes based on polyaniline-polyimide P84 blends. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Izzati Izni Yusoff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Nadiah Khairul Zaman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Mohd Usman Mohd Junaidi
- Department of Chemical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Zamardina Zainal
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| |
Collapse
|