1
|
Khoshroo G, Sápi A, Szenti I, Efremova A, Bali H, B.Ábrahámné K, Erdőhelyi A, Kukovecz Á, Kónya Z. Pure Ni-Based and Trimetallic Ni-Co-Fe Catalysts for the Dry Reforming of Methane: Effect of K Promoter and the Calcination Temperature. Catal Letters 2023; 153:2755-2762. [DOI: 10.1007/s10562-022-04203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
2
|
Namvar F, Salavati-Niasari M, Mahdi MA, Meshkani F. Multidisciplinary green approaches (ultrasonic, co-precipitation, hydrothermal, and microwave) for fabrication and characterization of Erbium-promoted Ni-Al2O3 catalyst for CO2 methanation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Figueroa-Quintero L, Ramos-Fernandez EV, Narciso J. Synthesis and Characterization of the Metal–Organic Framework CIM-80 for Organic Compounds Adsorption. MATERIALS 2022; 15:ma15155326. [PMID: 35955255 PMCID: PMC9369949 DOI: 10.3390/ma15155326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
Metal–organic frameworks (MOF) are a new type of porous materials that have great potential for adsorption of voltaic organic compounds (VOCs). These types of materials composed of metal ions and organic ligands are easy to synthesize, have high surface areas, their surface chemistry can be adjusted to the desired application, and they can also have good chemical and thermal stability. Therefore, this work focuses on the synthesis of a highly hydrophobic MOF material called CIM-80, a porous material that is made up of the Al3+ cation and the mesaconate linker. This MOF has a B.E.T. of approximately 800 m2/g and has potential applications for the adsorption of hydrophobic organic compounds. However, its synthesis is expensive and very dirty. Therefore, we have studied the synthesis conditions necessary to achieve high synthesis yields (85%) and materials with high crystallinity and accessible porosity. To achieve these results, we have used urea as a mild deprotonation reagent and modulator as an alternative to NaOH, which is traditionally used for the synthesis of this MOF. Once the synthesis of this material was controlled, its adsorption/desorption behavior of water and organic compounds such as toluene, cyclohexane and m-xylene was studied by means of vapor adsorption isotherms. The results show the hydrophobic character of the material and the greater affinity the material has toward aliphatic compounds than toward aromatic ones, with toluene being the most adsorbed compound, followed by cyclohexane and m-xylene.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
| | - Enrique Vicente Ramos-Fernandez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain; (L.F.-Q.); (E.V.R.-F.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03690 Alicante, Spain
- Correspondence:
| |
Collapse
|
4
|
Jraba N, Makhlouf T, Delahay G, Tounsi H. Catalytic activity of Cu/η-Al 2O 3 catalysts prepared from aluminum scraps in the NH 3-SCO and in the NH 3-SCR of NO. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9053-9064. [PMID: 34494193 DOI: 10.1007/s11356-021-16206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Copper-loaded η-alumina catalysts with different copper contents were prepared by impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV-Vis, and H2-TPR and evaluated, for the first time, in the selective catalytic reduction of NO by NH3 and in the selective catalytic oxidation of NH3. The characterization techniques showed that the impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the η-alumina surface when a low amount of copper is used (1wt. % and 2 wt.%). The wet impregnation method made it possible to reach a well dispersion of the copper species on the surface of the alumina for the low copper contents Cu(1)-Al2O3 and Cu(2)-Al2O3. The latter justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T> 500 °C.
Collapse
Affiliation(s)
- Nawel Jraba
- Laboratory of Georesources, Materials, Environments and Global Changes, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
| | - Thabet Makhlouf
- Laboratory of Georesources, Materials, Environments and Global Changes, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Gerard Delahay
- ICGM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Hassib Tounsi
- Laboratory of Advanced Materials, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Lan PW, Wang CC, Chen CY. Effect of Ni/Fe ratio in Ni–Fe catalysts prepared under external magnetic field on CO2 methanation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Zhang X, Vajglova Z, Mäki‐Arvela P, Peurla M, Palonen H, Murzin DY, Tungatarova SA, Baizhumanova TS, Aubakirov YA. Mono‐ and Bimetallic Ni−Co Catalysts in Dry Reforming of Methane. ChemistrySelect 2021. [DOI: 10.1002/slct.202100686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xuliang Zhang
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
| | - Zuzana Vajglova
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Päivi Mäki‐Arvela
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Markus Peurla
- Laboratory of Electron Microscopy University of Turku Turku 20014 Finland
| | - Heikki Palonen
- Wihuri Physical Laboratory Department of Physics and Astronomy University of Turku 20500 Turku Finland
| | - Dmitry Yu. Murzin
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku/Åbo 20500 Finland
| | - Svetlana A. Tungatarova
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
- D.V. Sokolsky Institute of Fuel Catalysis and Electrochemistry 142 Kunaev str. Almaty 050010 Kazakhstan
| | - Tolkyn S. Baizhumanova
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
- D.V. Sokolsky Institute of Fuel Catalysis and Electrochemistry 142 Kunaev str. Almaty 050010 Kazakhstan
| | - Yermek A. Aubakirov
- Al-Farabi Kazakh National University 71 al-Farabi ave. Almaty 050040 Kazakhstan
| |
Collapse
|
7
|
Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies. Processes (Basel) 2020. [DOI: 10.3390/pr8121646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The increasing utilization of renewable sources for electricity production turns CO2 methanation into a key process in the future energy context, as this reaction allows storing the temporary renewable electricity surplus in the natural gas network (Power-to-Gas). This kind of chemical reaction requires the use of a catalyst and thus it has gained the attention of many researchers thriving to achieve active, selective and stable materials in a remarkable number of studies. The existing papers published in literature in the past few years about CO2 methanation tackled the catalysts composition and their related performances and mechanisms, which served as a basis for researchers to further extend their in-depth investigations in the reported systems. In summary, the focus was mainly in the enhancement of the synthesized materials that involved the active metal phase (i.e., boosting its dispersion), the different types of solid supports, and the frequent addition of a second metal oxide (usually behaving as a promoter). The current manuscript aims in recapping a huge number of trials and is divided based on the support nature: SiO2, Al2O3, CeO2, ZrO2, MgO, hydrotalcites, carbons and zeolites, and proposes the main properties to be kept for obtaining highly efficient carbon dioxide methanation catalysts.
Collapse
|
8
|
|
9
|
Dong X, Jin B, Cao S, Ding Q, Wei Y, Chen T. CO x co-methanation over coal combustion fly ash supported Ni-Re bimetallic catalyst: Transformation from hazardous to high value-added products. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122668. [PMID: 32344361 DOI: 10.1016/j.jhazmat.2020.122668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 05/24/2023]
Abstract
The hazardous industrial waste, coal combustion fly ash (CCFA), was creatively applied as Ni-Re bimetallic catalyst support. The expected catalyst was facilely prepared by co-impregnation method and further tested for COx co-methanation in a continuous fixed-bed reactor. The physico-chemical properties of the catalyst were examined by a series of techniques including XRF, ICP, XRD, N2 isothermal adsorption, H2-TPR, SEM and TEM. The results showed that compared to non-promoted monometallic Ni catalyst, the addition of Re promoter forming Ni-Re bimetallic catalyst was able to facilitate NiO reduction and increase Ni dispersion as well as inhibit carbon deposition and Ni sintering during reaction. The performance tests revealed that Ni15Re1.0 presented superior COx co-methanation activity over Ni15Re0, Ni15Re0.5 and Ni15Re1.5 due to its better anti-coking and anti-sintering ability. Based on in-situ DRIFTS analysis, a possible cycle reaction mechanism of COx co-methanation was reasonably proposed in the end. The reaction pathway for CO and CO2 methanation differed from each other, where CO was linearly adsorbed on Ni metals followed by stepwise hydrogenation while CO2 was first immobilized by the surface hydroxyl group and then gradually reacted with H2 to form CH4.
Collapse
Affiliation(s)
- Xinxin Dong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Baosheng Jin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China.
| | - Songshan Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Qifeng Ding
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuexing Wei
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Tong Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
10
|
Shin Y, Chang J, Lee Y, Kang T. Direct Optical and Ultrasensitive Probing of Nonequilibrium Dynamics of Carbon Monoxide in an Aqueous Phase during Biochemical Reactions. ACS Sens 2020; 5:2221-2229. [PMID: 32608234 DOI: 10.1021/acssensors.0c00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of trace carbon monoxide (CO) dissolved in an aqueous phase is key for monitoring and optimizing biological and chemical gas conversions. So far, irrespective of the nonequilibrium nature of these conversion processes, because of low water solubility of CO, such detection has been performed indirectly, under the assumption of thermodynamic equilibrium, by the combination of chromatographic measurement of relatively abundant CO in a gas phase and Henry's law. Direct and sensitive detection of dissolved CO under nonequilibrium has not been explored yet. Here, we report the direct, ultrasensitive, and real-time monitoring of nonequilibrium dynamics of CO in an aqueous phase during biochemical conversions by devising miniaturized fluidic reactors with built-in CO-specific optical probes via surface-enhanced Raman spectroscopy. As the sensitive and selective probes, we fabricate ligand-free Au@Pd core-shell nanoparticle monolayers to maximize the Raman signal of single CO in the aqueous phase. We confirm that under equilibrium conditions, aqueous and gaseous CO concentrations estimated by our method are in good agreement with those measured directly and indirectly by gas chromatography (GC). We show that our probe can detect the aqueous CO concentrations as low as ca. 0.01% with high signal reproducibility, which is 200-fold more sensitive than that achieved by infrared spectroscopy. Finally, we successfully observe the nonequilibrium dynamics of the aqueous CO during biochemical reactions, which cannot be sensed by other detection methods including even indirect measurement by GC. We anticipate that our method can be widely applied not only for monitoring of biochemical gas reactions on multiple scales from a large reactor to a single-molecule level but also for molecular imaging of biological systems.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Jeehan Chang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Youngjae Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
11
|
Ray D, Chawdhury P, Subrahmanyam C. Promising Utilization of CO 2 for Syngas Production over Mg 2+- and Ce 2+-Promoted Ni/γ-Al 2O 3 Assisted by Nonthermal Plasma. ACS OMEGA 2020; 5:14040-14050. [PMID: 32566870 PMCID: PMC7301564 DOI: 10.1021/acsomega.0c01442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Dry reforming of methane is conducted in a catalyst packed-bed dielectric barrier discharge (DBD) reactor aiming to improve the reaction efficiency. The MgO- and CeO2-promoted Ni/γ-Al2O3 catalyst is tested to carry out the reaction. An interesting observation is that Ni/MgO_Al2O3 integration provides ∼35 and 13% conversion of CH4 and CO2, respectively. The highest syngas ratio of 0.94 is obtained with Ni/MgO_Al2O3, whereas the ratio is only 0.57 with Ni/CeO2_Al2O3 and 0.64 with bare DBD. In addition, Ni/CeO2_Al2O3 offers the highest selectivity (68%) of CO due to the oxygen buffer property of CeO2. Finally, the optimal acid/base property is highly desirable for the dry reforming reaction.
Collapse
|
12
|
|
13
|
Zhang Y, Yang H, Bian B, Guo Q, Liu Q. Organic Additive Assisted Ordered Mesoporous Ni/Al
2
O
3
Catalyst for CO
2
Methanation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological EngineeringShandong University of Science and Technology Qingdao 266590, Shandong China
| | - Hongyuan Yang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological EngineeringShandong University of Science and Technology Qingdao 266590, Shandong China
| | - Bing Bian
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological EngineeringShandong University of Science and Technology Qingdao 266590, Shandong China
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Qingbin Guo
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological EngineeringShandong University of Science and Technology Qingdao 266590, Shandong China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological EngineeringShandong University of Science and Technology Qingdao 266590, Shandong China
| |
Collapse
|
14
|
Hui Y, Ullah N, Zhang L, Li Z. CO
2
methanation over nickel‐based catalysts prepared by citric acid complexation method. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yajun Hui
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin University Tianjin China
| | - Niamat Ullah
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin University Tianjin China
| | - Lijuan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin University Tianjin China
| | - Zhenhua Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin University Tianjin China
| |
Collapse
|
15
|
Middelkoop V, Vamvakeros A, de Wit D, Jacques SD, Danaci S, Jacquot C, de Vos Y, Matras D, Price SW, Beale AM. 3D printed Ni/Al2O3 based catalysts for CO2 methanation - a comparative and operando XRD-CT study. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Abstract
In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation was also evaluated using the same catalysts. The prepared catalysts were characterized with a variety of techniques, including N2 physisorption, CO2 chemisorption, H2 chemisorption, temperature-programmed reduction with H2, temperature-programmed desorption of CO2, X-ray diffraction, high-resolution transmission electron microscopy, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The combination of supports with core-shell spinel structures and Ni doping with a deposition–precipitation method created outstanding catalytic performance of the Ni catalysts supported on Al@MgAl2O4 and Al@MnAl2O4 due to improved dispersion of Ni nanoparticles and creation of moderate basic sites with suitable strength. Good stability of Ni/Al@MnAl2O4 catalyst was also confirmed in the study.
Collapse
|
17
|
|