Dong S, Li Y, Zhu K, Wang C, Zhai S. Advances in structure designing and function tailoring strategy toward alginate-based hydrogels for efficient water remediation: A review.
Int J Biol Macromol 2025;
304:140801. [PMID:
39924010 DOI:
10.1016/j.ijbiomac.2025.140801]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Alginate (mainly sodium alginate, SA), as a natural polysaccharide material, has been widely applied in water remediation due to its excellent biocompatibility, degradability, and high hydration properties. Alginate hydrogels exhibit high adsorption capacity, effectively removing heavy metal ions, dyes, antibiotics, phosphate ions, and other pollutants from wastewater. This review begins with a description of the chemical structure of sodium alginate and its physicochemical properties, followed by a detailed discussion of the preparation methods of alginate-based composite hydrogels, including physical and chemical crosslinking, emulsification, electrostatic complexation, self-assembly, ultrasound and microwave-assisted methods. Based on the different compositions of the composites, alginate-based composite hydrogels are classified into several types for the removal of specific pollutants. Moreover, the paper systematically summarizes the research progress of alginate-based composite hydrogels in adsorbing heavy metal ions, dyes, antibiotics, phosphate ions for application effects. Although alginate-based composite hydrogels demonstrate great potential in water remediation, challenges such as insufficient mechanical strength, poor regeneration ability, and low stability under extreme conditions still exist. Finally, the future development prospects of alginate composite hydrogels in the field of water remediation, as well as potential research directions to improve their adsorption performance, enhance their regeneration capacity, and improve their environmental friendliness are presented.
Collapse