1
|
Long X, Yao M, Wang S, Ren C, Zhao X, Qin C, Liang C, Huang C, Yao S. Efficient Separation of Poplar Lignin Using a New Carboxylic Acid-Based Deep Eutectic Solvents - Choline Chloride/Malonic Acid. CHEMSUSCHEM 2025; 18:e202402345. [PMID: 39719884 DOI: 10.1002/cssc.202402345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/26/2024]
Abstract
Separation of lignin by pretreatment is an important step in biomass refining. This study investigated how a novel dicarboxylic acid-based deep eutectic solvent (DES) - choline chloride (ChCl)/malonic acid (MA) - affected the process of separating lignin from poplar. At 140 °C for 3.0 h, with a ChCl: MA molar ratio of 1: 3.5, the ideal pretreatment conditions were met, and 91.8 % lignin was obtained. Even after five DES reuses, the consistent and effective separation efficiency of 77.9 % remains unchanged. The hydrolysate contained 92.4 % of the recovered lignin, with a purity of 94.6 %. Moreover, the regenerated lignin obtained through the new DES pretreatment exhibited a high phenolic hydroxyl content of 1.9 mmol g-1 and a low polydispersity index of 1.4. The results showed efficient and selective separation of lignin using the new binary carboxylic acid-based DES pretreatment was achieved. This research offers a novel approach to effectively separate wood fiber biomass and extract valuable lignin.
Collapse
Affiliation(s)
- Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mingzhu Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chuangqi Ren
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xiao Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
2
|
Marchel M, Cieśliński H, Boczkaj G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
3
|
Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127963. [PMID: 34896723 DOI: 10.1016/j.jhazmat.2021.127963] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds used in their preparation. All these properties encouraged researchers to use them in diverse fields and applications e.g., as extractants for biomolecules and solvents in pharmaceutical and cosmetic industries. Nevertheless, despite undeniable potential of DESs, there is still controversy about their toxicity. Besides the low number of studies on this topic, there are also some contradicting reports on biocompatibility of these solvents. Such misleading reports could be mainly attributed to the lack of well design standard protocol for DESs toxicity determination or the use of out-off-purpose methodology. Thus, to better apply DESs in green and sustainable chemistry, more studies on their impact on organisms at different trophic levels and the use of proper techniques are required. This review focuses on DESs toxicity towards microorganisms and is divided into three parts: The first part provides a brief general introduction to DESs, the second part discusses the methodologies used for assessment of DESs microbial toxicity and the obtained results, and finally in the third part the critical evaluation of the methods is provided, as well as suggestions and guidelines for future research.
Collapse
Affiliation(s)
- Mateusz Marchel
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
4
|
Xu H, Peng J, Kong Y, Liu Y, Su Z, Li B, Song X, Liu S, Tian W. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. BIORESOURCE TECHNOLOGY 2020; 310:123416. [PMID: 32334906 DOI: 10.1016/j.biortech.2020.123416] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvent (DES) has been considered as a novel green solvent for lignocellulosic biomass pretreatment. The efficiency of DES pretreatment is affected by the synergy of various process parameters. The study of effect of DES physicochemical properties and pretreatment reaction conditions on the mechanism of lignocellulose biomass fractionation was of great significance for the development of biomass conversion. Form the view of process control, this review summarized recent advances in DES pretreatment, analyzed the challenges, and prospected the future development of this research field.
Collapse
Affiliation(s)
- Huanfei Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China.
| | - Jianjun Peng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yi Kong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaoze Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenning Su
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shiwei Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| | - Wende Tian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| |
Collapse
|