1
|
Pidal JMG, Fiori S, Scroccarello A, Della Pelle F, Maggio F, Serio A, Ferraro G, Escarpa A, Compagnone D. Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments. Mikrochim Acta 2024; 191:361. [PMID: 38822891 PMCID: PMC11144143 DOI: 10.1007/s00604-024-06427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, Florence, I-50019, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| |
Collapse
|
2
|
Panneer Selvam S, Cho S. Phosphate-driven H 2O 2 decomposition on DNA-bound bio-inspired activated carbon-based sensing platform for biological and food samples. Food Chem 2023; 421:136234. [PMID: 37119688 DOI: 10.1016/j.foodchem.2023.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Hydrogen peroxide (H2O2) is one of the most important reactive oxygen species (ROS). Increased endogenous H2O2 levels indicate oxidative stress and could be a potential marker of many diseases, including Alzheimer's, cardiovascular diseases, and diabetes. However, consuming H2O2-incorporated food has adverse effects on humans and is a serious health concern. We used salmon testes DNA with bio-inspired activated carbon (AC) as an electrocatalyst for developing a novel H2O2 sensor. The phosphate backbone of DNA contains negatively charged oxygen groups that specifically attract protons from H2O2 reduction. We observed a linearity range of 0.01-250.0 μM in the H2O2 reduction peak current with a detection limit of 2.5 and 45.7 nM for chronoamperometric and differential pulse voltammetric studies. High biocompatibility of the sensor was achieved by the DNA, facilitating endogenous H2O2 detection. Moreover, this non-enzymatic sensor could also help in the rapid screening of H2O2-contaminated foods.
Collapse
Affiliation(s)
- Sathish Panneer Selvam
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea; Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
3
|
Parveen S, Najrul Islam S, Ahmad A. Mycological synthesis of Ruthenium oxide quantum dots and their application in the colorimetric detection of H2O2. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Estes LM, Singha P, Singh S, Sakthivel TS, Garren M, Devine R, Brisbois EJ, Seal S, Handa H. Characterization of a nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) interactions and their synergistic antimicrobial potential for biomedical applications. J Colloid Interface Sci 2021; 586:163-177. [DOI: 10.1016/j.jcis.2020.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
|
6
|
Kang SW. Enhanced Olefin Transport by SiO 2 Particles for Polymer/Ag Metal/Electron Acceptor Composite Membranes. Polymers (Basel) 2020; 12:polym12102316. [PMID: 33050490 PMCID: PMC7600099 DOI: 10.3390/polym12102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
We showed the potential of poly(ethylene-co-propylene) (EPR)/silver metal/p-benzoquinone composite membranes for propylene/propane mixtures, i.e., a selectivity of 10 and a mixed gas permeance of 0.5 GPU (1 GPU = 1 × 10-6 cm3 (STP)/(cm2 s cmHg) in a previous study. In this study, we additionally found that the incorporation of fumed silica nanoparticles into EPR/silver metal/p-benzoquinone (p-BQ) composite membranes exhibited much higher permeance and selectivity for propylene/propane mixtures. The positive polarity of silver metal continuously increased with the increasing silica content up to the 0.1 weight ratio, as revealed by x-ray photoelectron spectroscopy (XPS). This increase in the polarity of silver metal was attributed to the enhanced interaction of p-BQ with the surface of Ag nanoparticles by the increased dispersion of p-BQ by fumed silica nanoparticles. Differential scanning calorimetry (DSC) also presented that the glass transition temperature (Tg) of the membranes was almost invariant. Therefore, the improvement of the permeance and selectivity with the silica nanoparticles was attributable to the increased polarity of the silver metal rather than the structural change.
Collapse
Affiliation(s)
- Sang Wook Kang
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea; ; Tel.: +82-2-2287-5362
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|