1
|
Sadeghy S, Pormazar SM, Ghaneian MT, Ehrampoush MH, Dalvand A. Modeling and optimization of direct dyes removal from aqueous solutions using activated carbon produced from sesame shell waste. Sci Rep 2024; 14:24867. [PMID: 39438688 PMCID: PMC11496657 DOI: 10.1038/s41598-024-76081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Today, there is a significant concern in the industry regarding the disposal of wastewater containing dyes into the environment, so the management and appropriate disposal of these wastes in the environment are considerable. The main aim of this study is to assess the efficiency of activated carbon (AC) prepared from sesame shells to remove direct dyes from aqueous solutions. According to the results, AC prepared from sesame shell had a high specific surface area (525 m2/g) and porous structure. The results demonstrated that the adsorbent had high potential to remove direct dyes as 84.5% of direct brown 103 (DB103), 93.08% of direct red 80 (DR80), 93.37% of direct blue 21 (DB21) and 98.39% of direct blue 199 (DB199) under the optimal conditions of adsorbent dose 4.8 g/L, contact time 19 min, pH 3 and initial dye concentration 12 mg/L. The experimental results showed that kinetic data were best described by the pseudo-second-order model (R2 = 0.989) while isotherm data were best fitted by the Freundlich model (R2 = 0.994). In the present study, not only was the produced waste used as a useful and economically valuable material, but it was also applied as an effective adsorbent to remove direct dyes from industrial effluents and reduce environmental pollution.
Collapse
Grants
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
- 13947 Shahid Sadoughi University of Medical Sciences, Iran, Islamic Republic Of
Collapse
Affiliation(s)
- Setareh Sadeghy
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Mahtab Pormazar
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mehralian M, Khashij M, Dalvand A. Treatment of cardboard factory wastewater using ozone-assisted electrocoagulation process: optimization through response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45041-45049. [PMID: 33860423 DOI: 10.1007/s11356-021-13921-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cardboard factory wastewater is usually known by high chemical oxygen demand (COD), color, phenols, lignin, and its derivatives, and usual treatment techniques are not able to treat such wastewaters. This study aimed to investigate the efficiency of ozone-assisted electrocoagulation process (EC/O3) for the treatment of real cardboard wastewater. The parameters influencing COD removal in the EC/O3 process were optimized using response surface methodology. Regard to the statistical model, the optimum conditions were obtained at current density 9.6 mA/cm2, time 20 min, and pH 12. At optimal condition, EC/O3 process removed 74.7% and 97.5% of COD and color, which was higher compared to ozonation and EC processes separately. The COD removal followed pseudo-first-order kinetic with the coefficient correlation of 0.97 and the reaction rate constant of 0.073 1/min. To sum up, the combined electrocoagulation process with ozonation could be used satisfactorily for removing pollutants from real cardboard wastewater.
Collapse
Affiliation(s)
- Mohammad Mehralian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Khashij
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Janani B, Al-Mohaimeed AM, Raju LL, Al Farraj DA, Thomas AM, Khan SS. Synthesis and characterizations of hybrid PEG-Fe 3O 4 nanoparticles for the efficient adsorptive removal of dye and antibacterial, and antibiofilm applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:389-400. [PMID: 34150243 PMCID: PMC8172665 DOI: 10.1007/s40201-021-00612-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/04/2021] [Indexed: 05/20/2023]
Abstract
PURPOSE Dyes are highly toxic coloured compounds in nature that are largely applied in paper, food, textile and printing industries. Here, the adsorption technique was performed to remove methyl orange (MO) dye from water by polyethylene glycol (PEG) modified iron oxide nanoparticles (Fe3O4 NPs). METHODS The method used for Fe3O4 NPs synthesis was chemical precipitation. The particles were analyzed by transmission electron microscope, magnetometer, BET analyzer, fourier-transform infrared spectroscopy, X-ray powder diffraction, zetasizer and particle size analyzer. The influence of pH (4.0 to 10.0), NaCl concentration (0.01 mM to 2 M), adsorbent dosage (1 to 10 mg), and the role of surface charge on adsorptive removal were investigated. RESULTS The NPs size, zeta potential and surface area was found to be 26 ± 1.26 nm, 33.12 ± 1.01 mV and 119 m2/g respectively. The adsorption of MO on Fe3O4 NPs agreed best to Freundlich model (R2 = 0.965) when compared with Langmuir model (R2 = 0.249). By comparing pseudo-first-order kinetic model (R2 = 0.937), kinetic adsorption study was better followed by pseudo-second-order kinetic model (R2 = 1). The adsorption rate decreased with increasing NaCl concentration. At pH 4, maximum adsorption was noted. The particles were also exhibited excellent antibacterial and antibiofilm activities. The ROS formation, lipid peroxidation and oxidative stress were increased with increase in NPs concentration. The NPs precoated slides exhibited more than 50% growth inhibition. CONCLUSION The investigation denotes the versatile applications of the prepared particles for removing the dye stuffs from industrial effluents and as antibacterial and antibiofilm agent.
Collapse
Affiliation(s)
- B. Janani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495 Saudi Arabia
| | - Lija L. Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajith M. Thomas
- Department of Botany and Biotechnology, St Xavier’s College, Thumba, Thiruvananthapuram, India
| | - S. Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| |
Collapse
|
5
|
Rajaei F, Taheri E, Hadi S, Fatehizadeh A, Amin MM, Rafei N, Fadaei S, Aminabhavi TM. Enhanced removal of humic acid from aqueous solution by combined alternating current electrocoagulation and sulfate radical. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116632. [PMID: 33640826 DOI: 10.1016/j.envpol.2021.116632] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Application of alternating current in electrocoagulation and activation of persulfate (AEC-PS) for the effective removal of humic acid (HA) from aqueous solution was evaluated. In order to optimize the removal efficiency HA by the AEC-PS process, several influencing parameters such as pH, reaction time, PS dose, current density (CD), concentration of NaCl, initial concentration of HA, and coexisting cations and anions influence were investigated. From the batch experiments, the highest HA removal efficiency obtained was 99.4 ± 0.5% at pH of 5, reaction time of 25 min, CD of 4.5 mA/cm2, PS dose of 200 mg/L, and NaCl concentration of 0.75 g/L for an initial HA concentration of 30 mg/L. When CD increased from 1.25 to 4.5 mA/cm2, the HA removal efficiency was improved from 88.8 ± 4.4% to 96.1 ± 1.5%. In addition, the type of coexisting cations and anions exerted a significant role, leading to a reduction in the removal efficiency of HA. To investigate the dominant free activated radical, radical scavengers such as tert-butyl alcohol and ethanol were employed. It was observed that both OH and SO4- radicals substantially contributed to the removal of HA, and the contribution of SO4- radical was higher than that of OH radical, suggesting that AEC-PS process could serve as a novel and effective treatment technique for the removal of organic matters from aqueous sources.
Collapse
Affiliation(s)
- Fatemeh Rajaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Fadaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
6
|
Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Pourali P, Behzad M, Arfaeinia H, Ahmadfazeli A, Afshin S, Poureshgh Y, Rashtbari Y. Removal of acid blue 113 from aqueous solutions using low-cost adsorbent: adsorption isotherms, thermodynamics, kinetics and regeneration studies. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1867583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peyman Pourali
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Malaekeh Behzad
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Ahmadfazeli
- Department of Environmental Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Afshin
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yousef Rashtbari
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Miri A, Mahabbati F, Najafidoust A, Miri MJ, Sarani M. Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemah Mahabbati
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Najafidoust
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
- Water and Wastewater Company of Tabriz, Tabriz, Iran
| | - Mohammad Javad Miri
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
9
|
Adsorption of Direct Red 23 dye from aqueous solution by means of modified montmorillonite nanoclay as a superadsorbent: Mechanism, kinetic and isotherm studies. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0629-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|