1
|
Shehata N, Egirani D, Olabi AG, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. CHEMOSPHERE 2023; 320:137993. [PMID: 36720408 DOI: 10.1016/j.chemosphere.2023.137993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based technologies are recently being considered as effective methods for conventional water and wastewater remediation processes to achieve the increasing demands for clean water and minimize the negative environmental effects. Although there are numerous merits of such technologies, some major challenges like high capital and operating costs . This study first focuses on reporting the current membrane-based technologies, i.e., nanofiltration, ultrafiltration, microfiltration, and forward- and reverse-osmosis membranes. The second part of this study deeply discusses the contributions of membrane-based technologies in achieving the sustainable development goals (SDGs) stated by the United Nations (UNs) in 2015 followed by their role in the circular economy. In brief, the membrane based processes directly impact 15 out of 17 SDGs which are SDG1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17. However, the merits, challenges, efficiencies, operating conditions, and applications are considered as the basis for evaluating such technologies in sustainable development, circular economy, and future development.
Collapse
Affiliation(s)
- Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Davidson Egirani
- Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|