1
|
Lee I, Moon J, Lee H, Koh S, Kim GM, Gauthé L, Stellacci F, Huh YS, Kim P, Lee DC. Photodynamic treatment of multidrug-resistant bacterial infection using indium phosphide quantum dots. Biomater Sci 2022; 10:7149-7161. [PMID: 36367125 DOI: 10.1039/d2bm01393b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria pose an impending threat to humanity, as the evolution of MDR bacteria outpaces the development of effective antibiotics. In this work, we use indium phosphide (InP) quantum dots (QDs) to treat infections caused by MDR bacteria via photodynamic therapy (PDT), which shows superior bactericidal efficiency over common antibiotics. PDT in the presence of InP QDs results in high-efficiency bactericidal activity towards various bacterial species, including Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Upon light absorption, InP QDs generate superoxide (O2˙-), which leads to efficient and selective killing of MDR bacteria while mammalian cells remain intact. The cytotoxicity evaluation reveals that InP QDs are bio- and blood-compatible in a wide therapeutic window. For the in vivo study, we drop a solution of InP QDs at a concentration within the therapeutic window onto MDR S. aureus-infected skin wounds of mice and perform PDT for 15 min. InP QDs show excellent therapeutic and prophylactic efficacy in treating MDR bacterial infection. These findings show that InP QDs have great potential to serve as antibacterial agents for MDR bacterial infection treatment, as an effective and complementary alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Ilsong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. .,KAIST Institute for the Nanocentury (KINC), KAIST, Daejeon 34141, Korea.,Energy & Environmental Research Center (EERC), KAIST, Daejeon 34141, Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Korea. .,KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea
| | - Hoomin Lee
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Korea.
| | - Sungjun Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. .,KAIST Institute for the Nanocentury (KINC), KAIST, Daejeon 34141, Korea.,Energy & Environmental Research Center (EERC), KAIST, Daejeon 34141, Korea
| | - Gui-Min Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. .,KAIST Institute for the Nanocentury (KINC), KAIST, Daejeon 34141, Korea.,Energy & Environmental Research Center (EERC), KAIST, Daejeon 34141, Korea
| | - Laure Gauthé
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. .,KAIST Institute for the Nanocentury (KINC), KAIST, Daejeon 34141, Korea.,Energy & Environmental Research Center (EERC), KAIST, Daejeon 34141, Korea
| | - Francesco Stellacci
- Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, Incheon 22212, Korea.
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Korea. .,KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea. .,KAIST Institute for the Nanocentury (KINC), KAIST, Daejeon 34141, Korea.,Energy & Environmental Research Center (EERC), KAIST, Daejeon 34141, Korea
| |
Collapse
|
2
|
Wang N, Cheong S, Yoon DE, Lu P, Lee H, Lee YK, Park YS, Lee DC. Efficient, Selective CO 2 Photoreduction Enabled by Facet-Resolved Redox-Active Sites on Colloidal CdS Nanosheets. J Am Chem Soc 2022; 144:16974-16983. [PMID: 36007150 DOI: 10.1021/jacs.2c06164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in nanotechnology have enabled precise design of catalytic sites for CO2 photoreduction, pushing product selectivity to near unity. However, activity of most nanostructured photocatalysts remains underwhelming due to fast recombination of photogenerated electron-hole pairs and sluggish hole transfer. To address these issues, we construct colloidal CdS nanosheets (NSs) with the large basal planes terminated by S2- atomic layers as intrinsic photocatalysts (CdS-S2- NSs). Experimental investigation reveals that the S2- termination endows ultrathin CdS-S2- NSs with facet-resolved redox-catalytic sites: oxidation occurs on S2--terminated large basal facets and reduction happens on side facets. Such an allocation of redox sites not only promotes spatial separation of photoinduced electrons and holes but also facilitates balanced extraction of holes and electrons by shortening the hole diffusion distance along the (001) direction of the ultrathin NSs. Consequently, the CdS-S2- NSs exhibit superb performance for photocatalytic CO2-to-CO conversion, which was verified by the isotope-labeled experiments to be a record-breaking performance: a CO selectivity of 99%, a CO formation rate of 2.13 mol g-1 h-1, and an effective apparent quantum efficiency of 42.1% under the irradiation (340 to 450 nm) of a solar simulator (AM 1.5G). The breakthrough performance achieved in this work provides novel insights into the precise design of nanostructures for selective and efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Nianfang Wang
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokhyeon Cheong
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Da-Eun Yoon
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pan Lu
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunjoo Lee
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Young Kuk Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Young-Shin Park
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy & Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Koh S, Choi Y, Lee I, Kim GM, Kim J, Park YS, Lee SY, Lee DC. Light-Driven Ammonia Production by Azotobacter vinelandii Cultured in Medium Containing Colloidal Quantum Dots. J Am Chem Soc 2022; 144:10798-10808. [DOI: 10.1021/jacs.2c01886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sungjun Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Yoojin Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ilsong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Gui-Min Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jayeong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Shin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doh C. Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|