1
|
Tang S, Wang Y, He P, Wang Y, Wei G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2660. [PMID: 38893925 PMCID: PMC11173850 DOI: 10.3390/ma17112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Environmental pollution caused by organic effluents emitted by industry has become a worldwide issue and poses a serious threat to the public and the ecosystem. Metal-organic frameworks (MOFs), comprising metal-containing clusters and organic bridging ligands, are porous and crystalline materials, possessing fascinating shape and size-dependent properties such as high surface area, abundant active sites, well-defined crystal morphologies, and huge potential for surface functionalization. To date, numerous well designated MOFs have emerged as critical functional materials to solve the growing challenges associated with water environmental issues. Here we present the recent progress of MOF-based materials and their applications in the treatment of organic effluents. Firstly, several traditional and emerging synthesis strategies for MOF composites are introduced. Then, the structural and functional regulations of MOF composites are presented and analyzed. Finally, typical applications of MOF-based materials in treating organic effluents, including chemical, pharmaceutical, textile, and agricultural wastewaters are summarized. Overall, this review is anticipated to tailor design and regulation of MOF-based functional materials for boosting the performance of organic effluent remediation.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| |
Collapse
|
2
|
Lin H, Yang Y, Hsu YC, Zhang J, Welton C, Afolabi I, Loo M, Zhou HC. Metal-Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209073. [PMID: 36693232 DOI: 10.1002/adma.202209073] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.
Collapse
Affiliation(s)
- Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Welton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ibukun Afolabi
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Marshal Loo
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Behaien S, Aghel B, Shadloo MS. Application of water scrubbing technique for biogas upgrading in a microchannel. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Mohan B, Kamboj A, Virender, Singh K, Priyanka, Singh G, JL Pombeiro A, Ren P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental Safetyaj. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Dong Y, Zheng J, Xing J, Zhao T, Peng S. In situ synthesis of gold nanoparticle on MIL-101(Cr)-NH2 for non-enzymatic dopamine sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ravi S, Choi Y, Park W, Han HH, Wu S, Xiao R, Bae YS. Novel triazine carbonyl polymer with large surface area and its polyethylimine functionalization for CO2 capture. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Abstract
The ZIF-8 crystals were successfully postsynthetically modified using methylamine (MA), ethylenediamine (ED), and N, N
-dimethylethylenediamine (MMEN) to improve their adsorption performance toward CO2. Results showed that, compared with the original ZIF-8, the BET specific surface area of MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 has increased by 118.2%, 92.0%, and 29.8%, respectively. In addition, their total pore volume increased separately by 130.8%, 100%, and 48.7%. The adsorption capacities of CO2 on the amine-modified ZIF-8 samples followed the order
. The CO2 adsorption capacities at 298 K on MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 were increased by 118.2%, 90.2%, and 29.8%, respectively. What is more, the CO2/N2 selectivities calculated using an IAST model of the amine@ZIF-8 samples at 0.01 bar and 298 K were also significantly improved and followed the order
, which increased by 173.0%, 121.4%, and 22.6%, respectively. The isosteric heat of CO2 adsorption (
) on the MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 all becomes higher, while
of N2 on these samples was slightly lower in comparison with that on the ZIF-8. Furthermore, after six recycle runs of gravimetric CO2 adsorption-desorption on MA-ZIF-8, the adsorption performance of CO2 is still very good, indicating that the MA-ZIF-8 sample has good regeneration performance and can be applied into industrial CO2 adsorption and separation.
Collapse
|
8
|
Vo TK, Kim J, Vu TH, Nguyen VC, Quang DT. Creating Cu(I)-decorated defective UiO-66(Zr) framework with high CO adsorption capacity and selectivity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Cueto-Díaz EJ, Castro-Muñiz A, Suárez-García F, Gálvez-Martínez S, Torquemada-Vico MC, Valles-González MP, Mateo-Martí E. APTES-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO 2 Gas Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2893. [PMID: 34835658 PMCID: PMC8620991 DOI: 10.3390/nano11112893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.
Collapse
Affiliation(s)
- Eduardo J. Cueto-Díaz
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Fabián Suárez-García
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC), C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain; (A.C.-M.); (F.S.-G.)
| | - Santos Gálvez-Martínez
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| | - Mª Carmen Torquemada-Vico
- Departamento de Óptica Espacial, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Mª Pilar Valles-González
- Departamento de Materiales y Estructuras, Instituto Nacional de Técnica Aeroespacial, Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Eva Mateo-Martí
- Centro de Astrobiología, (INTA-CSIC), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain; (S.G.-M.); (E.M.-M.)
| |
Collapse
|