1
|
Wenger SR, D'Alessandro DM. Aqueous Electrochemical Direct Air Capture Using Alizarin Red S. CHEMSUSCHEM 2025; 18:e202401315. [PMID: 39261283 PMCID: PMC11789980 DOI: 10.1002/cssc.202401315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Direct Air Capture (DAC) is an emerging form of atmospheric carbon dioxide removal. Conventional DAC sorbents utilize swings in temperature and/or pressure, which are energy intensive and hinders large-scale deployment. In this work, we demonstrate a green, aqueous electrochemical DAC system that employs Alizarin Red S (ARS) as an electroactive capturing agent. The system has an estimated minimum theoretical energy requirement of 24.6 kJe/mole of CO2, demonstrated reversible electrochemical behavior over 100 cycles and 205 hours, and maintained an average coulombic efficiency of 100 % with an average capacity retention of 99.8 %. With a techno-economic analysis, we highlight the impact of current density and electrode surface area on levelized costs, and we describe a path to lower the cost of DAC below US$500 per tonne of CO2.
Collapse
Affiliation(s)
- Samuel R. Wenger
- School of Chemical and Biomolecular EngineeringFaculty of EngineeringThe University of SydneyDarlington, NSW2008Australia
- School of ChemistryFaculty of ScienceThe University of SydneyCamperdown, NSW2006Australia
| | - Deanna M. D'Alessandro
- School of Chemical and Biomolecular EngineeringFaculty of EngineeringThe University of SydneyDarlington, NSW2008Australia
- School of ChemistryFaculty of ScienceThe University of SydneyCamperdown, NSW2006Australia
| |
Collapse
|
2
|
Moon HJ, Carrillo JY, Song M, Rim G, Heller WT, Leisen J, Proaño L, Short GN, Banerjee S, Sumpter BG, Jones CW. Underlying Roles of Polyol Additives in Promoting CO 2 Capture in PEI/Silica Adsorbents. CHEMSUSCHEM 2024; 17:e202400967. [PMID: 38830830 PMCID: PMC11587690 DOI: 10.1002/cssc.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Solid-supported amines having low molecular weight branched poly(ethylenimine) (PEI) physically impregnated into porous solid supports are promising adsorbents for CO2 capture. Co-impregnating short-chain poly(ethylene glycol) (PEG) together with PEI alters the performance of the adsorbent, delivering improved amine efficiency (AE, mol CO2 sorbed/mol N) and faster CO2 uptake rates. To uncover the physical basis for this improved gas capture performance, we probe the distribution and mobility of the polymers in the pores via small angle neutron scattering (SANS), solid-state NMR, and molecular dynamic (MD) simulation studies. SANS and MD simulations reveal that PEG displaces wall-bound PEI, making amines more accessible for CO2 sorption. Solid-state NMR and MD simulation suggest intercalation of PEG into PEI domains, separating PEI domains and reducing amine-amine interactions, providing potential PEG-rich and amine-poor interfacial domains that bind CO2 weakly via physisorption while providing facile pathways for CO2 diffusion. Contrary to a prior literature hypothesis, no evidence is obtained for PEG facilitating PEI mobility in solid supports. Instead, the data suggest that PEG chains coordinate to PEI, forming larger bodies with reduced mobility compared to PEI alone. We also demonstrate promising CO2 uptake and desorption kinetics at varied temperatures, facilitated by favorable amine distribution.
Collapse
Affiliation(s)
- Hyun June Moon
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | | | - MinGyu Song
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Guanhe Rim
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - William T. Heller
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Johannes Leisen
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Laura Proaño
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Gabriel N. Short
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Sayan Banerjee
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN 37380USA
| | - Christopher W. Jones
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| |
Collapse
|
3
|
Stampi-Bombelli V, Mazzotti M. Exploring Geometric Properties and Cycle Design in Packed Bed and Monolith Contactors Using Temperature-Vacuum Swing Adsorption Modeling for Direct Air Capture. Ind Eng Chem Res 2024; 63:19728-19743. [PMID: 39553914 PMCID: PMC11565576 DOI: 10.1021/acs.iecr.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
This study presents a comprehensive comparison between the packed bed and monolith contactor configurations for direct air capture (DAC) via process modeling of a temperature-vacuum swing adsorption (TVSA) process. We investigate various design parameters to optimize performance across different contactor geometries, including pellet size, monolith wall thickness, active sorbent content in monoliths, and packed bed structure configurations, considering both a traditional long column (PB40) and multiple shorter columns configured in parallel (PB5). Our parametric analysis assesses specific exergy consumption, sorbent, and volume requirements across different operating conditions of a five-step TVSA cycle. For minimizing sorbent requirements, PB5 and monoliths with over 80% sorbent loading were the best-performing contactor designs with overlapping performance in the low-exergy region. Beyond this region, PB5 faced limitations in reducing sorbent requirements further and was constrained by a maximum velocity at which it is sensible to operate without substantially increasing the exergy demand. In contrast, monoliths decreased sorbent requirements with minimal exergy increase due to reduced mass transfer resistances and lower pressure drop associated with their thin walls. The analysis of volume requirement-specific exergy Pareto fronts revealed that PB5 was less competitive with this metric due to the requirements for additional void space in the contactor configuration. The study also revealed that optimal sorbent loading for reducing volume requirements in monoliths differed from those minimizing sorbent usage, with the most effective loading being below 100%. Thus, the optimal contactor design varies depending on the goals of minimizing sorbent and volume requirements, and the choice and design of the contactor will depend on the relative costs of these factors. Lastly, our findings challenge the assumption that higher velocities are always preferable for direct air capture, suggesting instead that the operating velocity depends on the contactor configuration.
Collapse
Affiliation(s)
| | - Marco Mazzotti
- Institute of Energy and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Liu J, Wang Z, Liang C, Fang K, Li S, Guo X, Wang T, Fang M. Direct air capture of CO 2 using biochar prepared from sewage sludge: Adsorption capacity and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174887. [PMID: 39032738 DOI: 10.1016/j.scitotenv.2024.174887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
As an emerging carbon-negative emission technology, carbon dioxide (CO2) capture from the air is an essential safeguard for alleviating global warming. Sludge-activated carbon with excellent mesoporous structure is a potential material for CO2 capture. In this paper, the amino modified sewage sludge materials were used to prepare the porous CO2 adsorbent from air. The effect of preparation conditions on the microstructure of sewage sludge-based activated carbon materials was analyzed by microstructural characterization, and the impacts of activator, pyrolysis temperature, and the concentration of modifier on the CO2 adsorption performance of sewage sludge-based activated carbon materials were also systematically investigated. The results show that the pyrolysis temperature, the type of activator and the modifier concentration significantly affect the adsorption performance of sewage sludge-based CO2 adsorption materials. Among them, the sewage sludge-based CO2 adsorption material prepared with solid NaOH as an activator, with an activation temperature of 600 °C and loading concentration of 20 %, exhibited the best performance, that is the CO2 adsorption capacity reached 1.17 mmol/g, and the half time is about four min, which shows better performance, compared with other adsorbents for CO2 capture from air. The research results can reduce CO2 emissions on the one hand, and on the other hand, realize the resourceful utilization of sewage sludge, which sheds light on "treating the wastes with wastes".
Collapse
Affiliation(s)
- Jun Liu
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Zefan Wang
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Chenyang Liang
- SPIC nuclear power equipment CO., LTD., Yantai 26400,China
| | - Kehao Fang
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Shaokang Li
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xinwei Guo
- College of energy and power engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Tao Wang
- College of energy engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxiang Fang
- College of energy engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Jue ML, Ellebracht NC, Rasmussen MJ, Hunter-Sellars E, Marple MAT, Yung MM, Pang SH. Improving the direct air capture capacity of grafted amines via thermal treatment. Chem Commun (Camb) 2024; 60:7077-7080. [PMID: 38895782 DOI: 10.1039/d4cc01634c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This study investigates the effects of elevated temperature thermal treatments on the direct air capture of CO2 by aminosilane-grafted SBA-15 silica sorbents. Exposing samples to high temperatures (200-250 °C compared to 80-120 °C) in an inert environment resulted in improved CO2 capacity (5-21%) that was sustained over multiple adsorption/desorption cycles.
Collapse
Affiliation(s)
- Melinda L Jue
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nathan C Ellebracht
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Mathew J Rasmussen
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Elwin Hunter-Sellars
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Maxwell A T Marple
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Matthew M Yung
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Simon H Pang
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
6
|
Siderius DW, Hatch HW, Shen VK. Flat-Histogram Monte Carlo Simulation of Water Adsorption in Metal-Organic Frameworks. J Phys Chem B 2024; 128:4830-4845. [PMID: 38676704 PMCID: PMC11175621 DOI: 10.1021/acs.jpcb.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Molecular simulations of water adsorption in porous materials often converge slowly due to sampling bottlenecks that follow from hydrogen bonding and, in many cases, the formation of water clusters. These effects may be exacerbated in metal-organic framework (MOF) adsorbents, due to the presence of pore spaces (cages) that promote the formation of discrete-size clusters and hydrophobic effects (if present), among other reasons. In Grand Canonical Monte Carlo (MC) simulations, these sampling challenges are typically manifested by low MC acceptance ratios, a tendency for the simulation to become stuck in a particular loading state (i.e., macrostates), and the persistence of specific clusters for long periods of the simulation. We present simulation strategies to address these sampling challenges, by applying flat-histogram MC (FHMC) methods and specialized MC move types to simulations of water adsorption. FHMC, in both Transition-matrix and Wang-Landau forms, drives the simulation to sample relevant macrostates by incorporating weights that are self-consistently adjusted throughout the simulation and generate the macrostate probability distribution (MPD). Specialized MC moves, based on aggregation-volume bias and configurational bias methods, separately address low acceptance ratios for basic MC trial moves and specifically target water molecules in clusters; in turn, the specialized MC moves improve the efficiency of generating new configurations which is ultimately reflected in improved statistics collected by FHMC. The combined strategies are applied to study the adsorption of water in CuBTC and ZIF-8 at 300 K, through examination of the MPD and the adsorption isotherm generated by histogram reweighting. A key result is the appearance of nontrivial oscillations in the MPD, which we show to be associated with water clusters in the adsorption system. Additionally, we show that the probabilities of certain clusters become similar in value near the boundaries of the isotherm hysteresis loop, indicating a strong connection between cluster formation/destruction and the thermodynamic limits of stability. For a hydrophobic MOF, the FHMC results show that the phase transition from low density to high density is suppressed to water pressure far above the bulk-fluid saturation pressure; this is consistent with results presented elsewhere. We also compare our FHMC simulation isotherm to one measured by a different technique but with ostensibly the same molecular interactions and comment on observed differences and the need for follow-up work. The simulation strategies presented here can be applied to the simulation of water in other MOFs using heuristic guidelines laid out in our text, which should facilitate the more consistent and efficient simulation of water adsorption in porous materials in future applications.
Collapse
Affiliation(s)
- Daniel W. Siderius
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
7
|
Narayanan P, Guntupalli P, Lively RP, Jones CW. Alumina Incorporation in Self-Supported Poly(ethylenimine) Sorbents for Direct Air Capture. CHEM & BIO ENGINEERING 2024; 1:157-170. [PMID: 38566966 PMCID: PMC10983007 DOI: 10.1021/cbe.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
Self-supported branched poly(ethylenimine) scaffolds with ordered macropores are synthesized with and without Al2O3 powder additive by cross-linking poly(ethylenimine) (PEI) with poly(ethylene glycol) diglycidyl ether (PEGDGE) at -196 °C. The scaffolds' CO2 uptake performance is compared with a conventional sorbent, i.e., PEI impregnated on an Al2O3 support. PEI scaffolds with Al2O3 additive show narrow pore size distribution and thinner pore walls than alumina-free materials, facilitating higher CO2 uptake at conditions relevant to direct air capture. The PEI scaffold containing 6.5 wt % Al2O3 had the highest CO2 uptake of 1.23 mmol/g of sorbent under 50% RH 400 ppm of CO2 conditions. In situ DRIFT spectroscopy and temperature-programmed desorption experiments show a significant CO2 uptake contribution via physisorption as well as carbamic acid formation, with lower CO2 binding energies in PEI scaffolds relative to conventional PEI sorbents, likely a result of a lower population of primary amines due to the amine cross-linking reactions during scaffold synthesis. The PEI scaffold containing 6.5 wt % Al2O3 is estimated to have the lowest desorption energy penalty under humid conditions, 4.6 GJ/tCO2, among the sorbents studied.
Collapse
Affiliation(s)
- Pavithra Narayanan
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Pranav Guntupalli
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Wang Y, Rim G, Song M, Holmes HE, Jones CW, Lively RP. Cold Temperature Direct Air CO 2 Capture with Amine-Loaded Metal-Organic Framework Monoliths. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1404-1415. [PMID: 38109480 PMCID: PMC10788822 DOI: 10.1021/acsami.3c13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Zeolites, silica-supported amines, and metal-organic frameworks (MOFs) have been demonstrated as promising adsorbents for direct air CO2 capture (DAC), but the shaping and structuring of these materials into sorbent modules for practical processes have been inadequately investigated compared to the extensive research on powder materials. Furthermore, there have been relatively few studies reporting the DAC performance of sorbent contactors under cold, subambient conditions (temperatures below 20 °C). In this work, we demonstrate the successful fabrication of adsorbent monoliths composed of cellulose acetate (CA) and adsorbent particles such as zeolite 13X and MOF MIL-101(Cr) by a 3D printing technique: solution-based additive manufacturing (SBAM). These monoliths feature interpenetrated macroporous polymeric frameworks in which microcrystals of zeolite 13X or MIL-101(Cr) are evenly distributed, highlighting the versatility of SBAM in fabricating monoliths containing sorbents with different particle sizes and density. Branched poly(ethylenimine) (PEI) is successfully loaded into the CA/MIL-101(Cr) monoliths to impart CO2 uptakes of 1.05 mmol gmonolith-1 at -20 °C and 400 ppm of CO2. Kinetic analysis shows that the CO2 sorption kinetics of PEI-loaded MIL-101(Cr) sorbents are not compromised in the monoliths compared to the powder sorbents. Importantly, these monoliths exhibit promising working capacities (0.95 mmol gmonolith-1) over 14 temperature swing cycles with a moderate regeneration temperature of 60 °C. Dynamic breakthrough experiments at 25 °C under dry conditions reveal a CO2 uptake capacity of 0.60 mmol gmonolith-1, which further increases to 1.05 and 1.43 mmol gmonolith-1 at -20 °C under dry and humid (70% relative humidity) conditions, respectively. Our work showcases the successful implementation of SBAM in making DAC sorbent monoliths with notable CO2 capture performance over a wide range of sorption temperatures, suggesting that SBAM can enable the preparation of efficient sorbent contactors in various form factors for other important chemical separations.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Guanhe Rim
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - MinGyu Song
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Hannah E. Holmes
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Priyadarshini P, Rim G, Rosu C, Song M, Jones CW. Direct Air Capture of CO 2 Using Amine/Alumina Sorbents at Cold Temperature. ACS ENVIRONMENTAL AU 2023; 3:295-307. [PMID: 37743951 PMCID: PMC10515709 DOI: 10.1021/acsenvironau.3c00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 09/26/2023]
Abstract
Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents' performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (-20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g-1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at -20 °C under dry conditions (1.6 and 1.1 mmol g-1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g-1) across 10 cycles of adsorption-desorption (adsorption at -20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at -20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.
Collapse
Affiliation(s)
- Pranjali Priyadarshini
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Guanhe Rim
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Cornelia Rosu
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
10
|
Miao Y, Wang Y, Ge B, He Z, Zhu X, Li J, Liu S, Yu L. Mixed Diethanolamine and Polyethyleneimine with Enhanced CO 2 Capture Capacity from Air. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207253. [PMID: 37017566 DOI: 10.1002/advs.202207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Supported polyethyleneimine (PEI) adsorbent is one of the most promising commercial direct air capture (DAC) adsorbents with a long research history since 2002. Although great efforts have been input, there are still limited improvements for this material in its CO2 capacity and adsorption kinetics under ultradilute conditions. Supported PEI also suffers significantly reduced adsorption capacities when working at sub-ambient temperatures. This study reports that mixing diethanolamine (DEA) into supported PEI can increase 46% and 176% of pseudoequilibrium CO2 capacities at DAC conditions compared to the supported PEI and DEA, respectively. The mixed DEA/PEI functionalized adsorbents maintain the adsorption capacity at sub-ambient temperatures of -5 to 25 °C. In comparison, a 55% reduction of CO2 capacity is observed for supported PEI when the operating temperature decreases from 25 to -5 °C. In addition, the supported mixed DEA/PEI with a ratio of 1:1 also shows fast desorption kinetics at temperatures as low as 70 °C, resulting in maintaining high thermal and chemical stability over 50 DAC cycles with a high average CO2 working capacity of 1.29 mmol g-1 . These findings suggest that the concept of "mixed amine", widely studied in the solvent system, is also practical to supported amine for DAC applications.
Collapse
Affiliation(s)
- Yihe Miao
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Yaozu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhijun He
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai, 201306, China
| | - Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Li
- The Hong Kong University of Science and Technology (Guangzhou), No.2 Huan Shi Road South, Guangzhou, Nansha, 511458, China
- Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China
| | - Shanke Liu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Lijun Yu
- College of Smart Energy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
11
|
Rim G, Priyadarshini P, Song M, Wang Y, Bai A, Realff MJ, Lively RP, Jones CW. Support Pore Structure and Composition Strongly Influence the Direct Air Capture of CO 2 on Supported Amines. J Am Chem Soc 2023; 145:7190-7204. [PMID: 36972200 PMCID: PMC10080690 DOI: 10.1021/jacs.2c12707] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/29/2023]
Abstract
A variety of amine-impregnated porous solid sorbents for direct air capture (DAC) of CO2 have been developed, yet the effect of amine-solid support interactions on the CO2 adsorption behavior is still poorly understood. When tetraethylenepentamine (TEPA) is impregnated on two different supports, commercial γ-Al2O3 and MIL-101(Cr), they show different trends in CO2 sorption when the temperature (-20 to 25 °C) and humidity (0-70% RH) of the simulated air stream are varied. In situ IR spectroscopy is used to probe the mechanism of CO2 sorption on the two supported amine materials, with weak chemisorption (formation of carbamic acid) being the dominant pathway over MIL-101(Cr)-supported TEPA and strong chemisorption (formation of carbamate) occurring over γ-Al2O3-supported TEPA. Formation of both carbamic acid and carbamate species is enhanced over the supported TEPA materials under humid conditions, with the most significant enhancement observed at -20 °C. However, while equilibrium H2O sorption is high at cold temperatures (e.g., -20 °C), the effect of humidity on a practical cyclic DAC process is expected to be minimal due to slow H2O uptake kinetics. This work suggests that the CO2 capture mechanisms of impregnated amines can be controlled by adjusting the degree of amine-solid support interaction and that H2O adsorption behavior is strongly affected by the properties of the support materials. Thus, proper selection of solid support materials for amine impregnation will be important for achieving optimized DAC performance under varied deployment conditions, such as cold (e.g., -20 °C) or ambient temperature (e.g., 25 °C) operations.
Collapse
Affiliation(s)
- Guanhe Rim
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Pranjali Priyadarshini
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Yuxiang Wang
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Andrew Bai
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Matthew J. Realff
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
12
|
Yang M, Wang S, Xu L. Hydrophobic functionalized amine-impregnated resin for CO2 capture in humid air. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Short G, Burentugs E, Proaño L, Moon HJ, Rim G, Nezam I, Korde A, Nair S, Jones CW. Single-Walled Zeolitic Nanotubes: Advantaged Supports for Poly(ethylenimine) in CO 2 Separation from Simulated Air and Flue Gas. JACS AU 2023; 3:62-69. [PMID: 36711098 PMCID: PMC9875257 DOI: 10.1021/jacsau.2c00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.
Collapse
|
14
|
Low MY(A, Barton L, Pini R, Petit C. Analytical review of the current state of knowledge of adsorption materials and processes for direct air capture. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Lin X, Huang M, Zhu M, Zhao W, Gu X, Zhang W. Theoretical study on atmospheric gaseous reactions of glyoxal with sulfuric acid and ammonia. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Min YJ, Ganesan A, Realff MJ, Jones CW. Direct Air Capture of CO 2 Using Poly(ethyleneimine)-Functionalized Expanded Poly(tetrafluoroethylene)/Silica Composite Structured Sorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40992-41002. [PMID: 36047596 DOI: 10.1021/acsami.2c11143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapidly increasing atmospheric CO2 concentration has driven research into the development of cost- and energy-efficient materials and processes for the direct air capture of CO2 (DAC). Solid-supported amine materials can give high CO2 uptakes and acceptable sorption kinetics, but they are generally prepared in powder forms that are likely not practically deployable in large-scale operations due to significant pressure drops associated with packed-bed gas-solid contactors. To this end, the development of effective gas-solid contactors for CO2 capture technologies is important to allow processing high flow rates of gas with low-pressure drops and high mass transfer rates. In this study, we demonstrate new laminate-supported amine CO2 sorbents based on the impregnation of low-molecular-weight, branched poly(ethyleneimine) (PEI) into an expanded poly(tetrafluoroethylene) (ePTFE) sheet matrix containing embedded silica particles to form free-standing sheets amenable to incorporation into structured gas-solid contactors. The free-standing sheets are functionalized with PEI using a highly scalable wet impregnation method. This method allowed controllable PEI distribution and enough porosity retained inside the sheets to enable practical CO2 capacities ranging from 0.4 to 1.6 mmol CO2/gsorbent under dry conditions. Reversible CO2 capacities are achieved under both dry and humid temperature swing cycles, indicating promising material stability. The specific thermal energy requirement for the regeneration based on the measured CO2 and water capacities is 287 kJ/mol CO2, where the molar ratio of water to CO2 of 3.1 is achieved using hydrophobic materials. This is the lowest molar ratio among published DAC sorbents. A larger laminate module is tested under conditions closer to larger-scale operations (linear velocities 0.03, 0.05, and 0.1 m/sec) and demonstrates a stable capacity of 0.80 CO2/gsorbent over five cycles of CO2 adsorption and steam regeneration. The PEI-impregnated ePTFE/silica composite sorbent/contactors demonstrate promising DAC performance derived from the amine-filled silica particles contained in hydrophobic ePTFE domains to reduce water sorption and its concomitant regeneration energy penalty.
Collapse
Affiliation(s)
- Youn Ji Min
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Arvind Ganesan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Matthew J Realff
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Song M, Rim G, Kong F, Priyadarshini P, Rosu C, Lively RP, Jones CW. Cold-Temperature Capture of Carbon Dioxide with Water Coproduction from Air Using Commercial Zeolites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- MinGyu Song
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Guanhe Rim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fanhe Kong
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pranjali Priyadarshini
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cornelia Rosu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Lim H, Shin M, Phae CG, Kwon Y. Vanadium redox flow battery using activated carbon catalyst produced from low density polyethylene. Chem Asian J 2022; 17:e202200754. [PMID: 36089852 DOI: 10.1002/asia.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Carbonized and activated low-density polyethylene (LDPE) is suggested as a carbon catalyst for vanadium redox flow battery (VRFB). This carbon catalyst has many surface oxygen functional groups and a large surface area, while such benefits are achieved through activation of carbonized LDPE. According to electrochemical analysis, this carbon catalyst doped graphite felt (GF) enhances the redox reactivity of vanadium ions. More specifically, peak current density and peak potential separation for redox reaction of vanadium ions are 96.0 and 22.1% more improved than those measured by bare GF, while charge transfer resistance for the redox reactions is also improved by use of the catalyst doped GF. When performance of VRFB using this catalyst doped GF is measured, energy efficiency is 39% more improved than that measured without the catalyst. Based on that, this is revealed that new LDPE-based carbon catalyst is effective for performance improvement of VRFB.
Collapse
Affiliation(s)
- Hyeonsoo Lim
- SeoulTech: Seoul National University of Science and Technology, Department of New and Renewable Energy Convergence, KOREA, REPUBLIC OF
| | - Mingyu Shin
- SeoulTech: Seoul National University of Science and Technology, Department of Chemical and Biomolecular Engineering, KOREA, REPUBLIC OF
| | - Chae-Gun Phae
- SeoulTech: Seoul National University of Science and Technology, Department of Environmental Engineering, KOREA, REPUBLIC OF
| | - Yongchai Kwon
- SeoulTech: Seoul National University of Science and Technology, Chemical and Biomolecular Engineering, 232 Gongneung-ro,, Nowon-gu, 139-743, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
19
|
Wiegner JF, Grimm A, Weimann L, Gazzani M. Optimal Design and Operation of Solid Sorbent Direct Air Capture Processes at Varying Ambient Conditions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan F. Wiegner
- Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Alexa Grimm
- Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Lukas Weimann
- Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Matteo Gazzani
- Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
20
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
21
|
Rim G, Kong F, Song M, Rosu C, Priyadarshini P, Lively RP, Jones CW. Sub-Ambient Temperature Direct Air Capture of CO 2 using Amine-Impregnated MIL-101(Cr) Enables Ambient Temperature CO 2 Recovery. JACS AU 2022; 2:380-393. [PMID: 35252988 PMCID: PMC8889612 DOI: 10.1021/jacsau.1c00414] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 05/12/2023]
Abstract
Due to the dramatically increased atmospheric CO2 concentration and consequential climate change, significant effort has been made to develop sorbents to directly capture CO2 from ambient air (direct air capture, DAC) to achieve negative CO2 emissions in the immediate future. However, most developed sorbents have been studied under a limited array of temperature (>20 °C) and humidity conditions. In particular, the dearth of experimental data on DAC at sub-ambient conditions (e.g., -30 to 20 °C) and under humid conditions will severely hinder the large-scale implementation of DAC because the world has annual average temperatures ranging from -30 to 30 °C depending on the location and essentially no place has a zero absolute humidity. To this end, we suggest that understanding CO2 adsorption from ambient air at sub-ambient temperatures, below 20 °C, is crucial because colder temperatures represent important practical operating conditions and because such temperatures may provide conditions where new sorbent materials or enhanced process performance might be achieved. Here we demonstrate that MIL-101(Cr) materials impregnated with amines (TEPA, tetraethylenepentamine, or PEI, poly(ethylenimine)) offer promising adsorption and desorption behavior under DAC conditions in both the presence and absence of humidity under a wide range of temperatures (-20 to 25 °C). Depending on the amine loading and adsorption temperature, the sorbents show different CO2 capture behavior. With 30 and 50 wt % amine loadings, the sorbents show weak and strong chemisorption-dominant CO2 capture behavior, respectively. Interestingly, at -20 °C, the CO2 adsorption capacity of 30 wt % TEPA-impregnated MIL-101(Cr) significantly increased up to 1.12 mmol/g from 0.39 mmol/g at ambient conditions (25 °C) due to the enhanced weak chemisorption. More importantly, the sorbents also show promising working capacities (0.72 mmol/g) over 15 small temperature swing cycles with an ultralow regeneration temperature (-20 °C sorption to 25 °C desorption). The sub-ambient DAC performance of the sorbents is further enhanced under humid conditions, showing promising and stable CO2 working capacities over multiple humid small temperature swing cycles. These results demonstrate that appropriately designed DAC sorbents can operate in a weak chemisorption modality at low temperatures even in the presence of humidity. Significant energy savings may be realized via the utilization of small temperature swings enabled by this weak chemisorption behavior. This work suggests that significant work on DAC materials that operate at low, sub-ambient temperatures is warranted for possible deployment in temperate and polar climates.
Collapse
|
22
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|